Metamath Proof Explorer


Theorem elxrge02

Description: Elementhood in the set of nonnegative extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion elxrge02 ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+𝐴 = +∞ ) )

Proof

Step Hyp Ref Expression
1 0xr 0 ∈ ℝ*
2 pnfxr +∞ ∈ ℝ*
3 0lepnf 0 ≤ +∞
4 eliccioo ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) ) )
5 1 2 3 4 mp3an ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) )
6 biid ( 𝐴 = 0 ↔ 𝐴 = 0 )
7 ioorp ( 0 (,) +∞ ) = ℝ+
8 7 eleq2i ( 𝐴 ∈ ( 0 (,) +∞ ) ↔ 𝐴 ∈ ℝ+ )
9 biid ( 𝐴 = +∞ ↔ 𝐴 = +∞ )
10 6 8 9 3orbi123i ( ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+𝐴 = +∞ ) )
11 5 10 bitri ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+𝐴 = +∞ ) )