| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 3 |
|
0lepnf |
⊢ 0 ≤ +∞ |
| 4 |
|
eliccioo |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) ) ) |
| 5 |
1 2 3 4
|
mp3an |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) ) |
| 6 |
|
biid |
⊢ ( 𝐴 = 0 ↔ 𝐴 = 0 ) |
| 7 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 8 |
7
|
eleq2i |
⊢ ( 𝐴 ∈ ( 0 (,) +∞ ) ↔ 𝐴 ∈ ℝ+ ) |
| 9 |
|
biid |
⊢ ( 𝐴 = +∞ ↔ 𝐴 = +∞ ) |
| 10 |
6 8 9
|
3orbi123i |
⊢ ( ( 𝐴 = 0 ∨ 𝐴 ∈ ( 0 (,) +∞ ) ∨ 𝐴 = +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞ ) ) |
| 11 |
5 10
|
bitri |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞ ) ) |