Metamath Proof Explorer


Theorem xdivpnfrp

Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdivpnfrp ( 𝐴 ∈ ℝ+ → ( +∞ /𝑒 𝐴 ) = +∞ )

Proof

Step Hyp Ref Expression
1 rprene0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) )
2 pnfxr +∞ ∈ ℝ*
3 1 2 jctil ( 𝐴 ∈ ℝ+ → ( +∞ ∈ ℝ* ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) )
4 3anass ( ( +∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ↔ ( +∞ ∈ ℝ* ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) )
5 3 4 sylibr ( 𝐴 ∈ ℝ+ → ( +∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) )
6 xdivval ( ( +∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( +∞ /𝑒 𝐴 ) = ( 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) )
7 5 6 syl ( 𝐴 ∈ ℝ+ → ( +∞ /𝑒 𝐴 ) = ( 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) )
8 2 a1i ( 𝐴 ∈ ℝ+ → +∞ ∈ ℝ* )
9 xlemul2 ( ( +∞ ∈ ℝ*𝑥 ∈ ℝ*𝐴 ∈ ℝ+ ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) )
10 2 9 mp3an1 ( ( 𝑥 ∈ ℝ*𝐴 ∈ ℝ+ ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) )
11 10 ancoms ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) )
12 rpxr ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ* )
13 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
14 xmulpnf1 ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ )
15 12 13 14 syl2anc ( 𝐴 ∈ ℝ+ → ( 𝐴 ·e +∞ ) = +∞ )
16 15 adantr ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( 𝐴 ·e +∞ ) = +∞ )
17 16 breq1d ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ↔ +∞ ≤ ( 𝐴 ·e 𝑥 ) ) )
18 11 17 bitr2d ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ +∞ ≤ 𝑥 ) )
19 xmulcl ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝐴 ·e 𝑥 ) ∈ ℝ* )
20 12 19 sylan ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( 𝐴 ·e 𝑥 ) ∈ ℝ* )
21 xgepnf ( ( 𝐴 ·e 𝑥 ) ∈ ℝ* → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ ( 𝐴 ·e 𝑥 ) = +∞ ) )
22 20 21 syl ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ ( 𝐴 ·e 𝑥 ) = +∞ ) )
23 xgepnf ( 𝑥 ∈ ℝ* → ( +∞ ≤ 𝑥𝑥 = +∞ ) )
24 23 adantl ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( +∞ ≤ 𝑥𝑥 = +∞ ) )
25 18 22 24 3bitr3d ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℝ* ) → ( ( 𝐴 ·e 𝑥 ) = +∞ ↔ 𝑥 = +∞ ) )
26 8 25 riota5 ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) = +∞ )
27 7 26 eqtrd ( 𝐴 ∈ ℝ+ → ( +∞ /𝑒 𝐴 ) = +∞ )