Step |
Hyp |
Ref |
Expression |
1 |
|
rprene0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
1 2
|
jctil |
⊢ ( 𝐴 ∈ ℝ+ → ( +∞ ∈ ℝ* ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) ) |
4 |
|
3anass |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ↔ ( +∞ ∈ ℝ* ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐴 ∈ ℝ+ → ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ) |
6 |
|
xdivval |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( +∞ /𝑒 𝐴 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( +∞ /𝑒 𝐴 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) ) |
8 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → +∞ ∈ ℝ* ) |
9 |
|
xlemul2 |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+ ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) ) |
10 |
2 9
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+ ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( +∞ ≤ 𝑥 ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ) ) |
12 |
|
rpxr |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ* ) |
13 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
14 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
15 |
12 13 14
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ·e +∞ ) = +∞ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ·e +∞ ) = +∞ ) |
17 |
16
|
breq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ·e +∞ ) ≤ ( 𝐴 ·e 𝑥 ) ↔ +∞ ≤ ( 𝐴 ·e 𝑥 ) ) ) |
18 |
11 17
|
bitr2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ +∞ ≤ 𝑥 ) ) |
19 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ·e 𝑥 ) ∈ ℝ* ) |
20 |
12 19
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ·e 𝑥 ) ∈ ℝ* ) |
21 |
|
xgepnf |
⊢ ( ( 𝐴 ·e 𝑥 ) ∈ ℝ* → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ ( 𝐴 ·e 𝑥 ) = +∞ ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( +∞ ≤ ( 𝐴 ·e 𝑥 ) ↔ ( 𝐴 ·e 𝑥 ) = +∞ ) ) |
23 |
|
xgepnf |
⊢ ( 𝑥 ∈ ℝ* → ( +∞ ≤ 𝑥 ↔ 𝑥 = +∞ ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( +∞ ≤ 𝑥 ↔ 𝑥 = +∞ ) ) |
25 |
18 22 24
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ·e 𝑥 ) = +∞ ↔ 𝑥 = +∞ ) ) |
26 |
8 25
|
riota5 |
⊢ ( 𝐴 ∈ ℝ+ → ( ℩ 𝑥 ∈ ℝ* ( 𝐴 ·e 𝑥 ) = +∞ ) = +∞ ) |
27 |
7 26
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( +∞ /𝑒 𝐴 ) = +∞ ) |