Step |
Hyp |
Ref |
Expression |
1 |
|
rprene0 |
|- ( A e. RR+ -> ( A e. RR /\ A =/= 0 ) ) |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
1 2
|
jctil |
|- ( A e. RR+ -> ( +oo e. RR* /\ ( A e. RR /\ A =/= 0 ) ) ) |
4 |
|
3anass |
|- ( ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) <-> ( +oo e. RR* /\ ( A e. RR /\ A =/= 0 ) ) ) |
5 |
3 4
|
sylibr |
|- ( A e. RR+ -> ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) ) |
6 |
|
xdivval |
|- ( ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) -> ( +oo /e A ) = ( iota_ x e. RR* ( A *e x ) = +oo ) ) |
7 |
5 6
|
syl |
|- ( A e. RR+ -> ( +oo /e A ) = ( iota_ x e. RR* ( A *e x ) = +oo ) ) |
8 |
2
|
a1i |
|- ( A e. RR+ -> +oo e. RR* ) |
9 |
|
xlemul2 |
|- ( ( +oo e. RR* /\ x e. RR* /\ A e. RR+ ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) ) |
10 |
2 9
|
mp3an1 |
|- ( ( x e. RR* /\ A e. RR+ ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) ) |
11 |
10
|
ancoms |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) ) |
12 |
|
rpxr |
|- ( A e. RR+ -> A e. RR* ) |
13 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
14 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
15 |
12 13 14
|
syl2anc |
|- ( A e. RR+ -> ( A *e +oo ) = +oo ) |
16 |
15
|
adantr |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( A *e +oo ) = +oo ) |
17 |
16
|
breq1d |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( ( A *e +oo ) <_ ( A *e x ) <-> +oo <_ ( A *e x ) ) ) |
18 |
11 17
|
bitr2d |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ ( A *e x ) <-> +oo <_ x ) ) |
19 |
|
xmulcl |
|- ( ( A e. RR* /\ x e. RR* ) -> ( A *e x ) e. RR* ) |
20 |
12 19
|
sylan |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( A *e x ) e. RR* ) |
21 |
|
xgepnf |
|- ( ( A *e x ) e. RR* -> ( +oo <_ ( A *e x ) <-> ( A *e x ) = +oo ) ) |
22 |
20 21
|
syl |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ ( A *e x ) <-> ( A *e x ) = +oo ) ) |
23 |
|
xgepnf |
|- ( x e. RR* -> ( +oo <_ x <-> x = +oo ) ) |
24 |
23
|
adantl |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ x <-> x = +oo ) ) |
25 |
18 22 24
|
3bitr3d |
|- ( ( A e. RR+ /\ x e. RR* ) -> ( ( A *e x ) = +oo <-> x = +oo ) ) |
26 |
8 25
|
riota5 |
|- ( A e. RR+ -> ( iota_ x e. RR* ( A *e x ) = +oo ) = +oo ) |
27 |
7 26
|
eqtrd |
|- ( A e. RR+ -> ( +oo /e A ) = +oo ) |