Metamath Proof Explorer


Theorem xdivpnfrp

Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdivpnfrp
|- ( A e. RR+ -> ( +oo /e A ) = +oo )

Proof

Step Hyp Ref Expression
1 rprene0
 |-  ( A e. RR+ -> ( A e. RR /\ A =/= 0 ) )
2 pnfxr
 |-  +oo e. RR*
3 1 2 jctil
 |-  ( A e. RR+ -> ( +oo e. RR* /\ ( A e. RR /\ A =/= 0 ) ) )
4 3anass
 |-  ( ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) <-> ( +oo e. RR* /\ ( A e. RR /\ A =/= 0 ) ) )
5 3 4 sylibr
 |-  ( A e. RR+ -> ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) )
6 xdivval
 |-  ( ( +oo e. RR* /\ A e. RR /\ A =/= 0 ) -> ( +oo /e A ) = ( iota_ x e. RR* ( A *e x ) = +oo ) )
7 5 6 syl
 |-  ( A e. RR+ -> ( +oo /e A ) = ( iota_ x e. RR* ( A *e x ) = +oo ) )
8 2 a1i
 |-  ( A e. RR+ -> +oo e. RR* )
9 xlemul2
 |-  ( ( +oo e. RR* /\ x e. RR* /\ A e. RR+ ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) )
10 2 9 mp3an1
 |-  ( ( x e. RR* /\ A e. RR+ ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) )
11 10 ancoms
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ x <-> ( A *e +oo ) <_ ( A *e x ) ) )
12 rpxr
 |-  ( A e. RR+ -> A e. RR* )
13 rpgt0
 |-  ( A e. RR+ -> 0 < A )
14 xmulpnf1
 |-  ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo )
15 12 13 14 syl2anc
 |-  ( A e. RR+ -> ( A *e +oo ) = +oo )
16 15 adantr
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( A *e +oo ) = +oo )
17 16 breq1d
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( ( A *e +oo ) <_ ( A *e x ) <-> +oo <_ ( A *e x ) ) )
18 11 17 bitr2d
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ ( A *e x ) <-> +oo <_ x ) )
19 xmulcl
 |-  ( ( A e. RR* /\ x e. RR* ) -> ( A *e x ) e. RR* )
20 12 19 sylan
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( A *e x ) e. RR* )
21 xgepnf
 |-  ( ( A *e x ) e. RR* -> ( +oo <_ ( A *e x ) <-> ( A *e x ) = +oo ) )
22 20 21 syl
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ ( A *e x ) <-> ( A *e x ) = +oo ) )
23 xgepnf
 |-  ( x e. RR* -> ( +oo <_ x <-> x = +oo ) )
24 23 adantl
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( +oo <_ x <-> x = +oo ) )
25 18 22 24 3bitr3d
 |-  ( ( A e. RR+ /\ x e. RR* ) -> ( ( A *e x ) = +oo <-> x = +oo ) )
26 8 25 riota5
 |-  ( A e. RR+ -> ( iota_ x e. RR* ( A *e x ) = +oo ) = +oo )
27 7 26 eqtrd
 |-  ( A e. RR+ -> ( +oo /e A ) = +oo )