Metamath Proof Explorer


Theorem xdivpnfrp

Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdivpnfrp A++∞÷𝑒A=+∞

Proof

Step Hyp Ref Expression
1 rprene0 A+AA0
2 pnfxr +∞*
3 1 2 jctil A++∞*AA0
4 3anass +∞*AA0+∞*AA0
5 3 4 sylibr A++∞*AA0
6 xdivval +∞*AA0+∞÷𝑒A=ιx*|A𝑒x=+∞
7 5 6 syl A++∞÷𝑒A=ιx*|A𝑒x=+∞
8 2 a1i A++∞*
9 xlemul2 +∞*x*A++∞xA𝑒+∞A𝑒x
10 2 9 mp3an1 x*A++∞xA𝑒+∞A𝑒x
11 10 ancoms A+x*+∞xA𝑒+∞A𝑒x
12 rpxr A+A*
13 rpgt0 A+0<A
14 xmulpnf1 A*0<AA𝑒+∞=+∞
15 12 13 14 syl2anc A+A𝑒+∞=+∞
16 15 adantr A+x*A𝑒+∞=+∞
17 16 breq1d A+x*A𝑒+∞A𝑒x+∞A𝑒x
18 11 17 bitr2d A+x*+∞A𝑒x+∞x
19 xmulcl A*x*A𝑒x*
20 12 19 sylan A+x*A𝑒x*
21 xgepnf A𝑒x*+∞A𝑒xA𝑒x=+∞
22 20 21 syl A+x*+∞A𝑒xA𝑒x=+∞
23 xgepnf x*+∞xx=+∞
24 23 adantl A+x*+∞xx=+∞
25 18 22 24 3bitr3d A+x*A𝑒x=+∞x=+∞
26 8 25 riota5 A+ιx*|A𝑒x=+∞=+∞
27 7 26 eqtrd A++∞÷𝑒A=+∞