Metamath Proof Explorer


Theorem xdivpnfrp

Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdivpnfrp A + +∞ ÷ 𝑒 A = +∞

Proof

Step Hyp Ref Expression
1 rprene0 A + A A 0
2 pnfxr +∞ *
3 1 2 jctil A + +∞ * A A 0
4 3anass +∞ * A A 0 +∞ * A A 0
5 3 4 sylibr A + +∞ * A A 0
6 xdivval +∞ * A A 0 +∞ ÷ 𝑒 A = ι x * | A 𝑒 x = +∞
7 5 6 syl A + +∞ ÷ 𝑒 A = ι x * | A 𝑒 x = +∞
8 2 a1i A + +∞ *
9 xlemul2 +∞ * x * A + +∞ x A 𝑒 +∞ A 𝑒 x
10 2 9 mp3an1 x * A + +∞ x A 𝑒 +∞ A 𝑒 x
11 10 ancoms A + x * +∞ x A 𝑒 +∞ A 𝑒 x
12 rpxr A + A *
13 rpgt0 A + 0 < A
14 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
15 12 13 14 syl2anc A + A 𝑒 +∞ = +∞
16 15 adantr A + x * A 𝑒 +∞ = +∞
17 16 breq1d A + x * A 𝑒 +∞ A 𝑒 x +∞ A 𝑒 x
18 11 17 bitr2d A + x * +∞ A 𝑒 x +∞ x
19 xmulcl A * x * A 𝑒 x *
20 12 19 sylan A + x * A 𝑒 x *
21 xgepnf A 𝑒 x * +∞ A 𝑒 x A 𝑒 x = +∞
22 20 21 syl A + x * +∞ A 𝑒 x A 𝑒 x = +∞
23 xgepnf x * +∞ x x = +∞
24 23 adantl A + x * +∞ x x = +∞
25 18 22 24 3bitr3d A + x * A 𝑒 x = +∞ x = +∞
26 8 25 riota5 A + ι x * | A 𝑒 x = +∞ = +∞
27 7 26 eqtrd A + +∞ ÷ 𝑒 A = +∞