Metamath Proof Explorer


Theorem rpxdivcld

Description: Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses rpxdivcld.1 φ A +
rpxdivcld.2 φ B +
Assertion rpxdivcld φ A ÷ 𝑒 B +

Proof

Step Hyp Ref Expression
1 rpxdivcld.1 φ A +
2 rpxdivcld.2 φ B +
3 1 rpred φ A
4 2 rpred φ B
5 2 rpne0d φ B 0
6 rexdiv A B B 0 A ÷ 𝑒 B = A B
7 3 4 5 6 syl3anc φ A ÷ 𝑒 B = A B
8 1 2 rpdivcld φ A B +
9 7 8 eqeltrd φ A ÷ 𝑒 B +