Metamath Proof Explorer


Theorem rpxdivcld

Description: Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses rpxdivcld.1
|- ( ph -> A e. RR+ )
rpxdivcld.2
|- ( ph -> B e. RR+ )
Assertion rpxdivcld
|- ( ph -> ( A /e B ) e. RR+ )

Proof

Step Hyp Ref Expression
1 rpxdivcld.1
 |-  ( ph -> A e. RR+ )
2 rpxdivcld.2
 |-  ( ph -> B e. RR+ )
3 1 rpred
 |-  ( ph -> A e. RR )
4 2 rpred
 |-  ( ph -> B e. RR )
5 2 rpne0d
 |-  ( ph -> B =/= 0 )
6 rexdiv
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( A / B ) )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( A /e B ) = ( A / B ) )
8 1 2 rpdivcld
 |-  ( ph -> ( A / B ) e. RR+ )
9 7 8 eqeltrd
 |-  ( ph -> ( A /e B ) e. RR+ )