Description: Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpxdivcld.1 | |- ( ph -> A e. RR+ ) |
|
| rpxdivcld.2 | |- ( ph -> B e. RR+ ) |
||
| Assertion | rpxdivcld | |- ( ph -> ( A /e B ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxdivcld.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpxdivcld.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | 1 | rpred | |- ( ph -> A e. RR ) |
| 4 | 2 | rpred | |- ( ph -> B e. RR ) |
| 5 | 2 | rpne0d | |- ( ph -> B =/= 0 ) |
| 6 | rexdiv | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( A / B ) ) |
|
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( A /e B ) = ( A / B ) ) |
| 8 | 1 2 | rpdivcld | |- ( ph -> ( A / B ) e. RR+ ) |
| 9 | 7 8 | eqeltrd | |- ( ph -> ( A /e B ) e. RR+ ) |