Metamath Proof Explorer


Theorem xrpxdivcld

Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses xrpxdivcld.1
|- ( ph -> A e. ( 0 [,] +oo ) )
xrpxdivcld.2
|- ( ph -> B e. RR+ )
Assertion xrpxdivcld
|- ( ph -> ( A /e B ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 xrpxdivcld.1
 |-  ( ph -> A e. ( 0 [,] +oo ) )
2 xrpxdivcld.2
 |-  ( ph -> B e. RR+ )
3 oveq1
 |-  ( A = 0 -> ( A /e B ) = ( 0 /e B ) )
4 xdiv0rp
 |-  ( B e. RR+ -> ( 0 /e B ) = 0 )
5 2 4 syl
 |-  ( ph -> ( 0 /e B ) = 0 )
6 3 5 sylan9eqr
 |-  ( ( ph /\ A = 0 ) -> ( A /e B ) = 0 )
7 elxrge02
 |-  ( ( A /e B ) e. ( 0 [,] +oo ) <-> ( ( A /e B ) = 0 \/ ( A /e B ) e. RR+ \/ ( A /e B ) = +oo ) )
8 7 biimpri
 |-  ( ( ( A /e B ) = 0 \/ ( A /e B ) e. RR+ \/ ( A /e B ) = +oo ) -> ( A /e B ) e. ( 0 [,] +oo ) )
9 8 3o1cs
 |-  ( ( A /e B ) = 0 -> ( A /e B ) e. ( 0 [,] +oo ) )
10 6 9 syl
 |-  ( ( ph /\ A = 0 ) -> ( A /e B ) e. ( 0 [,] +oo ) )
11 simpr
 |-  ( ( ph /\ A e. RR+ ) -> A e. RR+ )
12 2 adantr
 |-  ( ( ph /\ A e. RR+ ) -> B e. RR+ )
13 11 12 rpxdivcld
 |-  ( ( ph /\ A e. RR+ ) -> ( A /e B ) e. RR+ )
14 8 3o2cs
 |-  ( ( A /e B ) e. RR+ -> ( A /e B ) e. ( 0 [,] +oo ) )
15 13 14 syl
 |-  ( ( ph /\ A e. RR+ ) -> ( A /e B ) e. ( 0 [,] +oo ) )
16 oveq1
 |-  ( A = +oo -> ( A /e B ) = ( +oo /e B ) )
17 xdivpnfrp
 |-  ( B e. RR+ -> ( +oo /e B ) = +oo )
18 2 17 syl
 |-  ( ph -> ( +oo /e B ) = +oo )
19 16 18 sylan9eqr
 |-  ( ( ph /\ A = +oo ) -> ( A /e B ) = +oo )
20 8 3o3cs
 |-  ( ( A /e B ) = +oo -> ( A /e B ) e. ( 0 [,] +oo ) )
21 19 20 syl
 |-  ( ( ph /\ A = +oo ) -> ( A /e B ) e. ( 0 [,] +oo ) )
22 elxrge02
 |-  ( A e. ( 0 [,] +oo ) <-> ( A = 0 \/ A e. RR+ \/ A = +oo ) )
23 1 22 sylib
 |-  ( ph -> ( A = 0 \/ A e. RR+ \/ A = +oo ) )
24 10 15 21 23 mpjao3dan
 |-  ( ph -> ( A /e B ) e. ( 0 [,] +oo ) )