| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrpxdivcld.1 |
|- ( ph -> A e. ( 0 [,] +oo ) ) |
| 2 |
|
xrpxdivcld.2 |
|- ( ph -> B e. RR+ ) |
| 3 |
|
oveq1 |
|- ( A = 0 -> ( A /e B ) = ( 0 /e B ) ) |
| 4 |
|
xdiv0rp |
|- ( B e. RR+ -> ( 0 /e B ) = 0 ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( 0 /e B ) = 0 ) |
| 6 |
3 5
|
sylan9eqr |
|- ( ( ph /\ A = 0 ) -> ( A /e B ) = 0 ) |
| 7 |
|
elxrge02 |
|- ( ( A /e B ) e. ( 0 [,] +oo ) <-> ( ( A /e B ) = 0 \/ ( A /e B ) e. RR+ \/ ( A /e B ) = +oo ) ) |
| 8 |
7
|
biimpri |
|- ( ( ( A /e B ) = 0 \/ ( A /e B ) e. RR+ \/ ( A /e B ) = +oo ) -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 9 |
8
|
3o1cs |
|- ( ( A /e B ) = 0 -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 10 |
6 9
|
syl |
|- ( ( ph /\ A = 0 ) -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ A e. RR+ ) -> A e. RR+ ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ A e. RR+ ) -> B e. RR+ ) |
| 13 |
11 12
|
rpxdivcld |
|- ( ( ph /\ A e. RR+ ) -> ( A /e B ) e. RR+ ) |
| 14 |
8
|
3o2cs |
|- ( ( A /e B ) e. RR+ -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ A e. RR+ ) -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 16 |
|
oveq1 |
|- ( A = +oo -> ( A /e B ) = ( +oo /e B ) ) |
| 17 |
|
xdivpnfrp |
|- ( B e. RR+ -> ( +oo /e B ) = +oo ) |
| 18 |
2 17
|
syl |
|- ( ph -> ( +oo /e B ) = +oo ) |
| 19 |
16 18
|
sylan9eqr |
|- ( ( ph /\ A = +oo ) -> ( A /e B ) = +oo ) |
| 20 |
8
|
3o3cs |
|- ( ( A /e B ) = +oo -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 21 |
19 20
|
syl |
|- ( ( ph /\ A = +oo ) -> ( A /e B ) e. ( 0 [,] +oo ) ) |
| 22 |
|
elxrge02 |
|- ( A e. ( 0 [,] +oo ) <-> ( A = 0 \/ A e. RR+ \/ A = +oo ) ) |
| 23 |
1 22
|
sylib |
|- ( ph -> ( A = 0 \/ A e. RR+ \/ A = +oo ) ) |
| 24 |
10 15 21 23
|
mpjao3dan |
|- ( ph -> ( A /e B ) e. ( 0 [,] +oo ) ) |