Step |
Hyp |
Ref |
Expression |
1 |
|
xrpxdivcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
2 |
|
xrpxdivcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 /𝑒 𝐵 ) = ( 0 /𝑒 𝐵 ) ) |
4 |
|
xdiv0rp |
⊢ ( 𝐵 ∈ ℝ+ → ( 0 /𝑒 𝐵 ) = 0 ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 0 /𝑒 𝐵 ) = 0 ) |
6 |
3 5
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 /𝑒 𝐵 ) = 0 ) |
7 |
|
elxrge02 |
⊢ ( ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐴 /𝑒 𝐵 ) = 0 ∨ ( 𝐴 /𝑒 𝐵 ) ∈ ℝ+ ∨ ( 𝐴 /𝑒 𝐵 ) = +∞ ) ) |
8 |
7
|
biimpri |
⊢ ( ( ( 𝐴 /𝑒 𝐵 ) = 0 ∨ ( 𝐴 /𝑒 𝐵 ) ∈ ℝ+ ∨ ( 𝐴 /𝑒 𝐵 ) = +∞ ) → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
9 |
8
|
3o1cs |
⊢ ( ( 𝐴 /𝑒 𝐵 ) = 0 → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
10 |
6 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
13 |
11 12
|
rpxdivcld |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → ( 𝐴 /𝑒 𝐵 ) ∈ ℝ+ ) |
14 |
8
|
3o2cs |
⊢ ( ( 𝐴 /𝑒 𝐵 ) ∈ ℝ+ → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
16 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 /𝑒 𝐵 ) = ( +∞ /𝑒 𝐵 ) ) |
17 |
|
xdivpnfrp |
⊢ ( 𝐵 ∈ ℝ+ → ( +∞ /𝑒 𝐵 ) = +∞ ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → ( +∞ /𝑒 𝐵 ) = +∞ ) |
19 |
16 18
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → ( 𝐴 /𝑒 𝐵 ) = +∞ ) |
20 |
8
|
3o3cs |
⊢ ( ( 𝐴 /𝑒 𝐵 ) = +∞ → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
22 |
|
elxrge02 |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞ ) ) |
23 |
1 22
|
sylib |
⊢ ( 𝜑 → ( 𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞ ) ) |
24 |
10 15 21 23
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |