Metamath Proof Explorer


Theorem xrpxdivcld

Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses xrpxdivcld.1 φA0+∞
xrpxdivcld.2 φB+
Assertion xrpxdivcld φA÷𝑒B0+∞

Proof

Step Hyp Ref Expression
1 xrpxdivcld.1 φA0+∞
2 xrpxdivcld.2 φB+
3 oveq1 A=0A÷𝑒B=0÷𝑒B
4 xdiv0rp B+0÷𝑒B=0
5 2 4 syl φ0÷𝑒B=0
6 3 5 sylan9eqr φA=0A÷𝑒B=0
7 elxrge02 A÷𝑒B0+∞A÷𝑒B=0A÷𝑒B+A÷𝑒B=+∞
8 7 biimpri A÷𝑒B=0A÷𝑒B+A÷𝑒B=+∞A÷𝑒B0+∞
9 8 3o1cs A÷𝑒B=0A÷𝑒B0+∞
10 6 9 syl φA=0A÷𝑒B0+∞
11 simpr φA+A+
12 2 adantr φA+B+
13 11 12 rpxdivcld φA+A÷𝑒B+
14 8 3o2cs A÷𝑒B+A÷𝑒B0+∞
15 13 14 syl φA+A÷𝑒B0+∞
16 oveq1 A=+∞A÷𝑒B=+∞÷𝑒B
17 xdivpnfrp B++∞÷𝑒B=+∞
18 2 17 syl φ+∞÷𝑒B=+∞
19 16 18 sylan9eqr φA=+∞A÷𝑒B=+∞
20 8 3o3cs A÷𝑒B=+∞A÷𝑒B0+∞
21 19 20 syl φA=+∞A÷𝑒B0+∞
22 elxrge02 A0+∞A=0A+A=+∞
23 1 22 sylib φA=0A+A=+∞
24 10 15 21 23 mpjao3dan φA÷𝑒B0+∞