Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → 𝐹 ∈ V ) |
3 |
|
ovexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ V ) |
4 |
|
ovexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ∈ V ) |
5 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
7 |
5 6
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
8 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) |
9 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
10 |
8 9
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
11 |
7 10
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
12 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
13 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
14 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
15 |
13 14
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℝ* → ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
16 |
12 15
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
17 |
11 16
|
eqtr3i |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
19 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
20 |
19 11
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
21 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
22 |
21 11
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
23 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
24 |
|
ovex |
⊢ ( 0 [,) +∞ ) ∈ V |
25 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
26 |
8 25
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
27 |
24 26
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
28 |
27
|
oveqi |
⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) |
29 |
23 28 11
|
3eltr3g |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
30 |
20 22 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑥 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
31 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
32 |
5 31
|
sselid |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
33 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
34 |
5 33
|
sselid |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
35 |
|
rexadd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
36 |
35
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) = ( 𝑥 +𝑒 𝑦 ) ) |
37 |
32 34 36
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 +𝑒 𝑦 ) ) |
38 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
39 |
13 38
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
40 |
24 39
|
ax-mp |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
41 |
40
|
oveqi |
⊢ ( 𝑥 +𝑒 𝑦 ) = ( 𝑥 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) |
42 |
37 28 41
|
3eqtr3g |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) ) |
43 |
20 22 42
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑥 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑦 ) ) |
44 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
45 |
44
|
ffund |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → Fun 𝐹 ) |
46 |
44
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ran 𝐹 ⊆ ( 0 [,) +∞ ) ) |
47 |
46 11
|
sseqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ran 𝐹 ⊆ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
48 |
2 3 4 18 30 43 45 47
|
gsumpropd2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg 𝐹 ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg 𝐹 ) ) |
49 |
|
cnfldex |
⊢ ℂfld ∈ V |
50 |
49
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ℂfld ∈ V ) |
51 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → 𝐴 ∈ 𝑉 ) |
52 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( 0 [,) +∞ ) ⊆ ℂ ) |
53 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
54 |
53
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → 0 ∈ ( 0 [,) +∞ ) ) |
55 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
56 |
55
|
addid2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
57 |
55
|
addid1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
58 |
56 57
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
59 |
9 25 8 50 51 52 44 54 58
|
gsumress |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg 𝐹 ) = ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg 𝐹 ) ) |
60 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
61 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
62 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
63 |
|
ressress |
⊢ ( ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( ( 0 [,] +∞ ) ∩ ( 0 [,) +∞ ) ) ) ) |
64 |
62 24 63
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( ( 0 [,] +∞ ) ∩ ( 0 [,) +∞ ) ) ) |
65 |
|
incom |
⊢ ( ( 0 [,] +∞ ) ∩ ( 0 [,) +∞ ) ) = ( ( 0 [,) +∞ ) ∩ ( 0 [,] +∞ ) ) |
66 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
67 |
|
dfss |
⊢ ( ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ↔ ( 0 [,) +∞ ) = ( ( 0 [,) +∞ ) ∩ ( 0 [,] +∞ ) ) ) |
68 |
66 67
|
mpbi |
⊢ ( 0 [,) +∞ ) = ( ( 0 [,) +∞ ) ∩ ( 0 [,] +∞ ) ) |
69 |
65 68
|
eqtr4i |
⊢ ( ( 0 [,] +∞ ) ∩ ( 0 [,) +∞ ) ) = ( 0 [,) +∞ ) |
70 |
69
|
oveq2i |
⊢ ( ℝ*𝑠 ↾s ( ( 0 [,] +∞ ) ∩ ( 0 [,) +∞ ) ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
71 |
64 70
|
eqtr2i |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) |
72 |
|
ovexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ V ) |
73 |
66
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
74 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
75 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
76 |
74 75
|
sselid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ℝ* ) |
77 |
|
xaddid2 |
⊢ ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 ) |
78 |
76 77
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 0 +𝑒 𝑥 ) = 𝑥 ) |
79 |
|
xaddid1 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 +𝑒 0 ) = 𝑥 ) |
80 |
76 79
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 0 ) = 𝑥 ) |
81 |
78 80
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
82 |
60 61 71 72 51 73 44 54 81
|
gsumress |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg 𝐹 ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg 𝐹 ) ) |
83 |
48 59 82
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg 𝐹 ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg 𝐹 ) ) |