Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
|
2 |
1
|
ancoms |
|
3 |
|
ovexd |
|
4 |
|
ovexd |
|
5 |
|
rge0ssre |
|
6 |
|
ax-resscn |
|
7 |
5 6
|
sstri |
|
8 |
|
eqid |
|
9 |
|
cnfldbas |
|
10 |
8 9
|
ressbas2 |
|
11 |
7 10
|
ax-mp |
|
12 |
|
icossxr |
|
13 |
|
eqid |
|
14 |
|
xrsbas |
|
15 |
13 14
|
ressbas2 |
|
16 |
12 15
|
ax-mp |
|
17 |
11 16
|
eqtr3i |
|
18 |
17
|
a1i |
|
19 |
|
simprl |
|
20 |
19 11
|
eleqtrrdi |
|
21 |
|
simprr |
|
22 |
21 11
|
eleqtrrdi |
|
23 |
|
ge0addcl |
|
24 |
|
ovex |
|
25 |
|
cnfldadd |
|
26 |
8 25
|
ressplusg |
|
27 |
24 26
|
ax-mp |
|
28 |
27
|
oveqi |
|
29 |
23 28 11
|
3eltr3g |
|
30 |
20 22 29
|
syl2anc |
|
31 |
|
simpl |
|
32 |
5 31
|
sselid |
|
33 |
|
simpr |
|
34 |
5 33
|
sselid |
|
35 |
|
rexadd |
|
36 |
35
|
eqcomd |
|
37 |
32 34 36
|
syl2anc |
|
38 |
|
xrsadd |
|
39 |
13 38
|
ressplusg |
|
40 |
24 39
|
ax-mp |
|
41 |
40
|
oveqi |
|
42 |
37 28 41
|
3eqtr3g |
|
43 |
20 22 42
|
syl2anc |
|
44 |
|
simpr |
|
45 |
44
|
ffund |
|
46 |
44
|
frnd |
|
47 |
46 11
|
sseqtrdi |
|
48 |
2 3 4 18 30 43 45 47
|
gsumpropd2 |
|
49 |
|
cnfldex |
|
50 |
49
|
a1i |
|
51 |
|
simpl |
|
52 |
7
|
a1i |
|
53 |
|
0e0icopnf |
|
54 |
53
|
a1i |
|
55 |
|
simpr |
|
56 |
55
|
addid2d |
|
57 |
55
|
addid1d |
|
58 |
56 57
|
jca |
|
59 |
9 25 8 50 51 52 44 54 58
|
gsumress |
|
60 |
|
xrge0base |
|
61 |
|
xrge0plusg |
|
62 |
|
ovex |
|
63 |
|
ressress |
|
64 |
62 24 63
|
mp2an |
|
65 |
|
incom |
|
66 |
|
icossicc |
|
67 |
|
dfss |
|
68 |
66 67
|
mpbi |
|
69 |
65 68
|
eqtr4i |
|
70 |
69
|
oveq2i |
|
71 |
64 70
|
eqtr2i |
|
72 |
|
ovexd |
|
73 |
66
|
a1i |
|
74 |
|
iccssxr |
|
75 |
|
simpr |
|
76 |
74 75
|
sselid |
|
77 |
|
xaddid2 |
|
78 |
76 77
|
syl |
|
79 |
|
xaddid1 |
|
80 |
76 79
|
syl |
|
81 |
78 80
|
jca |
|
82 |
60 61 71 72 51 73 44 54 81
|
gsumress |
|
83 |
48 59 82
|
3eqtr4d |
|