Metamath Proof Explorer


Theorem esumpfinvallem

Description: Lemma for esumpfinval . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Assertion esumpfinvallem A V F : A 0 +∞ fld F = 𝑠 * 𝑠 0 +∞ F

Proof

Step Hyp Ref Expression
1 fex F : A 0 +∞ A V F V
2 1 ancoms A V F : A 0 +∞ F V
3 ovexd A V F : A 0 +∞ fld 𝑠 0 +∞ V
4 ovexd A V F : A 0 +∞ 𝑠 * 𝑠 0 +∞ V
5 rge0ssre 0 +∞
6 ax-resscn
7 5 6 sstri 0 +∞
8 eqid fld 𝑠 0 +∞ = fld 𝑠 0 +∞
9 cnfldbas = Base fld
10 8 9 ressbas2 0 +∞ 0 +∞ = Base fld 𝑠 0 +∞
11 7 10 ax-mp 0 +∞ = Base fld 𝑠 0 +∞
12 icossxr 0 +∞ *
13 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
14 xrsbas * = Base 𝑠 *
15 13 14 ressbas2 0 +∞ * 0 +∞ = Base 𝑠 * 𝑠 0 +∞
16 12 15 ax-mp 0 +∞ = Base 𝑠 * 𝑠 0 +∞
17 11 16 eqtr3i Base fld 𝑠 0 +∞ = Base 𝑠 * 𝑠 0 +∞
18 17 a1i A V F : A 0 +∞ Base fld 𝑠 0 +∞ = Base 𝑠 * 𝑠 0 +∞
19 simprl A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ x Base fld 𝑠 0 +∞
20 19 11 eleqtrrdi A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ x 0 +∞
21 simprr A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞
22 21 11 eleqtrrdi A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ y 0 +∞
23 ge0addcl x 0 +∞ y 0 +∞ x + y 0 +∞
24 ovex 0 +∞ V
25 cnfldadd + = + fld
26 8 25 ressplusg 0 +∞ V + = + fld 𝑠 0 +∞
27 24 26 ax-mp + = + fld 𝑠 0 +∞
28 27 oveqi x + y = x + fld 𝑠 0 +∞ y
29 23 28 11 3eltr3g x 0 +∞ y 0 +∞ x + fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞
30 20 22 29 syl2anc A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ x + fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞
31 simpl x 0 +∞ y 0 +∞ x 0 +∞
32 5 31 sselid x 0 +∞ y 0 +∞ x
33 simpr x 0 +∞ y 0 +∞ y 0 +∞
34 5 33 sselid x 0 +∞ y 0 +∞ y
35 rexadd x y x + 𝑒 y = x + y
36 35 eqcomd x y x + y = x + 𝑒 y
37 32 34 36 syl2anc x 0 +∞ y 0 +∞ x + y = x + 𝑒 y
38 xrsadd + 𝑒 = + 𝑠 *
39 13 38 ressplusg 0 +∞ V + 𝑒 = + 𝑠 * 𝑠 0 +∞
40 24 39 ax-mp + 𝑒 = + 𝑠 * 𝑠 0 +∞
41 40 oveqi x + 𝑒 y = x + 𝑠 * 𝑠 0 +∞ y
42 37 28 41 3eqtr3g x 0 +∞ y 0 +∞ x + fld 𝑠 0 +∞ y = x + 𝑠 * 𝑠 0 +∞ y
43 20 22 42 syl2anc A V F : A 0 +∞ x Base fld 𝑠 0 +∞ y Base fld 𝑠 0 +∞ x + fld 𝑠 0 +∞ y = x + 𝑠 * 𝑠 0 +∞ y
44 simpr A V F : A 0 +∞ F : A 0 +∞
45 44 ffund A V F : A 0 +∞ Fun F
46 44 frnd A V F : A 0 +∞ ran F 0 +∞
47 46 11 sseqtrdi A V F : A 0 +∞ ran F Base fld 𝑠 0 +∞
48 2 3 4 18 30 43 45 47 gsumpropd2 A V F : A 0 +∞ fld 𝑠 0 +∞ F = 𝑠 * 𝑠 0 +∞ F
49 cnfldex fld V
50 49 a1i A V F : A 0 +∞ fld V
51 simpl A V F : A 0 +∞ A V
52 7 a1i A V F : A 0 +∞ 0 +∞
53 0e0icopnf 0 0 +∞
54 53 a1i A V F : A 0 +∞ 0 0 +∞
55 simpr A V F : A 0 +∞ x x
56 55 addid2d A V F : A 0 +∞ x 0 + x = x
57 55 addid1d A V F : A 0 +∞ x x + 0 = x
58 56 57 jca A V F : A 0 +∞ x 0 + x = x x + 0 = x
59 9 25 8 50 51 52 44 54 58 gsumress A V F : A 0 +∞ fld F = fld 𝑠 0 +∞ F
60 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
61 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
62 ovex 0 +∞ V
63 ressress 0 +∞ V 0 +∞ V 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞ 0 +∞
64 62 24 63 mp2an 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞ 0 +∞
65 incom 0 +∞ 0 +∞ = 0 +∞ 0 +∞
66 icossicc 0 +∞ 0 +∞
67 dfss 0 +∞ 0 +∞ 0 +∞ = 0 +∞ 0 +∞
68 66 67 mpbi 0 +∞ = 0 +∞ 0 +∞
69 65 68 eqtr4i 0 +∞ 0 +∞ = 0 +∞
70 69 oveq2i 𝑠 * 𝑠 0 +∞ 0 +∞ = 𝑠 * 𝑠 0 +∞
71 64 70 eqtr2i 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞
72 ovexd A V F : A 0 +∞ 𝑠 * 𝑠 0 +∞ V
73 66 a1i A V F : A 0 +∞ 0 +∞ 0 +∞
74 iccssxr 0 +∞ *
75 simpr A V F : A 0 +∞ x 0 +∞ x 0 +∞
76 74 75 sselid A V F : A 0 +∞ x 0 +∞ x *
77 xaddid2 x * 0 + 𝑒 x = x
78 76 77 syl A V F : A 0 +∞ x 0 +∞ 0 + 𝑒 x = x
79 xaddid1 x * x + 𝑒 0 = x
80 76 79 syl A V F : A 0 +∞ x 0 +∞ x + 𝑒 0 = x
81 78 80 jca A V F : A 0 +∞ x 0 +∞ 0 + 𝑒 x = x x + 𝑒 0 = x
82 60 61 71 72 51 73 44 54 81 gsumress A V F : A 0 +∞ 𝑠 * 𝑠 0 +∞ F = 𝑠 * 𝑠 0 +∞ F
83 48 59 82 3eqtr4d A V F : A 0 +∞ fld F = 𝑠 * 𝑠 0 +∞ F