| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fex |
|
| 2 |
1
|
ancoms |
|
| 3 |
|
ovexd |
|
| 4 |
|
ovexd |
|
| 5 |
|
rge0ssre |
|
| 6 |
|
ax-resscn |
|
| 7 |
5 6
|
sstri |
|
| 8 |
|
eqid |
|
| 9 |
|
cnfldbas |
|
| 10 |
8 9
|
ressbas2 |
|
| 11 |
7 10
|
ax-mp |
|
| 12 |
|
icossxr |
|
| 13 |
|
eqid |
|
| 14 |
|
xrsbas |
|
| 15 |
13 14
|
ressbas2 |
|
| 16 |
12 15
|
ax-mp |
|
| 17 |
11 16
|
eqtr3i |
|
| 18 |
17
|
a1i |
|
| 19 |
|
simprl |
|
| 20 |
19 11
|
eleqtrrdi |
|
| 21 |
|
simprr |
|
| 22 |
21 11
|
eleqtrrdi |
|
| 23 |
|
ge0addcl |
|
| 24 |
|
ovex |
|
| 25 |
|
cnfldadd |
|
| 26 |
8 25
|
ressplusg |
|
| 27 |
24 26
|
ax-mp |
|
| 28 |
27
|
oveqi |
|
| 29 |
23 28 11
|
3eltr3g |
|
| 30 |
20 22 29
|
syl2anc |
|
| 31 |
|
simpl |
|
| 32 |
5 31
|
sselid |
|
| 33 |
|
simpr |
|
| 34 |
5 33
|
sselid |
|
| 35 |
|
rexadd |
|
| 36 |
35
|
eqcomd |
|
| 37 |
32 34 36
|
syl2anc |
|
| 38 |
|
xrsadd |
|
| 39 |
13 38
|
ressplusg |
|
| 40 |
24 39
|
ax-mp |
|
| 41 |
40
|
oveqi |
|
| 42 |
37 28 41
|
3eqtr3g |
|
| 43 |
20 22 42
|
syl2anc |
|
| 44 |
|
simpr |
|
| 45 |
44
|
ffund |
|
| 46 |
44
|
frnd |
|
| 47 |
46 11
|
sseqtrdi |
|
| 48 |
2 3 4 18 30 43 45 47
|
gsumpropd2 |
|
| 49 |
|
cnfldex |
|
| 50 |
49
|
a1i |
|
| 51 |
|
simpl |
|
| 52 |
7
|
a1i |
|
| 53 |
|
0e0icopnf |
|
| 54 |
53
|
a1i |
|
| 55 |
|
simpr |
|
| 56 |
55
|
addlidd |
|
| 57 |
55
|
addridd |
|
| 58 |
56 57
|
jca |
|
| 59 |
9 25 8 50 51 52 44 54 58
|
gsumress |
|
| 60 |
|
xrge0base |
|
| 61 |
|
xrge0plusg |
|
| 62 |
|
ovex |
|
| 63 |
|
ressress |
|
| 64 |
62 24 63
|
mp2an |
|
| 65 |
|
incom |
|
| 66 |
|
icossicc |
|
| 67 |
|
dfss |
|
| 68 |
66 67
|
mpbi |
|
| 69 |
65 68
|
eqtr4i |
|
| 70 |
69
|
oveq2i |
|
| 71 |
64 70
|
eqtr2i |
|
| 72 |
|
ovexd |
|
| 73 |
66
|
a1i |
|
| 74 |
|
iccssxr |
|
| 75 |
|
simpr |
|
| 76 |
74 75
|
sselid |
|
| 77 |
|
xaddlid |
|
| 78 |
76 77
|
syl |
|
| 79 |
|
xaddrid |
|
| 80 |
76 79
|
syl |
|
| 81 |
78 80
|
jca |
|
| 82 |
60 61 71 72 51 73 44 54 81
|
gsumress |
|
| 83 |
48 59 82
|
3eqtr4d |
|