Step |
Hyp |
Ref |
Expression |
1 |
|
esumpfinval.a |
|
2 |
|
esumpfinval.b |
|
3 |
|
df-esum |
|
4 |
|
xrge0base |
|
5 |
|
xrge00 |
|
6 |
|
xrge0cmn |
|
7 |
6
|
a1i |
|
8 |
|
xrge0tps |
|
9 |
8
|
a1i |
|
10 |
|
icossicc |
|
11 |
10 2
|
sselid |
|
12 |
11
|
fmpttd |
|
13 |
|
eqid |
|
14 |
|
c0ex |
|
15 |
14
|
a1i |
|
16 |
13 1 2 15
|
fsuppmptdm |
|
17 |
|
xrge0topn |
|
18 |
17
|
eqcomi |
|
19 |
|
xrhaus |
|
20 |
|
ovex |
|
21 |
|
resthaus |
|
22 |
19 20 21
|
mp2an |
|
23 |
22
|
a1i |
|
24 |
4 5 7 9 1 12 16 18 23
|
haustsmsid |
|
25 |
24
|
unieqd |
|
26 |
3 25
|
syl5eq |
|
27 |
|
ovex |
|
28 |
27
|
unisn |
|
29 |
26 28
|
eqtrdi |
|
30 |
2
|
fmpttd |
|
31 |
|
esumpfinvallem |
|
32 |
1 30 31
|
syl2anc |
|
33 |
|
rge0ssre |
|
34 |
|
ax-resscn |
|
35 |
33 34
|
sstri |
|
36 |
35 2
|
sselid |
|
37 |
1 36
|
gsumfsum |
|
38 |
29 32 37
|
3eqtr2d |
|