Metamath Proof Explorer


Theorem esumpfinval

Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses esumpfinval.a φAFin
esumpfinval.b φkAB0+∞
Assertion esumpfinval φ*kAB=kAB

Proof

Step Hyp Ref Expression
1 esumpfinval.a φAFin
2 esumpfinval.b φkAB0+∞
3 df-esum *kAB=𝑠*𝑠0+∞tsumskAB
4 xrge0base 0+∞=Base𝑠*𝑠0+∞
5 xrge00 0=0𝑠*𝑠0+∞
6 xrge0cmn 𝑠*𝑠0+∞CMnd
7 6 a1i φ𝑠*𝑠0+∞CMnd
8 xrge0tps 𝑠*𝑠0+∞TopSp
9 8 a1i φ𝑠*𝑠0+∞TopSp
10 icossicc 0+∞0+∞
11 10 2 sselid φkAB0+∞
12 11 fmpttd φkAB:A0+∞
13 eqid kAB=kAB
14 c0ex 0V
15 14 a1i φ0V
16 13 1 2 15 fsuppmptdm φfinSupp0kAB
17 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
18 17 eqcomi ordTop𝑡0+∞=TopOpen𝑠*𝑠0+∞
19 xrhaus ordTopHaus
20 ovex 0+∞V
21 resthaus ordTopHaus0+∞VordTop𝑡0+∞Haus
22 19 20 21 mp2an ordTop𝑡0+∞Haus
23 22 a1i φordTop𝑡0+∞Haus
24 4 5 7 9 1 12 16 18 23 haustsmsid φ𝑠*𝑠0+∞tsumskAB=𝑠*𝑠0+∞kAB
25 24 unieqd φ𝑠*𝑠0+∞tsumskAB=𝑠*𝑠0+∞kAB
26 3 25 eqtrid φ*kAB=𝑠*𝑠0+∞kAB
27 ovex 𝑠*𝑠0+∞kABV
28 27 unisn 𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kAB
29 26 28 eqtrdi φ*kAB=𝑠*𝑠0+∞kAB
30 2 fmpttd φkAB:A0+∞
31 esumpfinvallem AFinkAB:A0+∞fldkAB=𝑠*𝑠0+∞kAB
32 1 30 31 syl2anc φfldkAB=𝑠*𝑠0+∞kAB
33 rge0ssre 0+∞
34 ax-resscn
35 33 34 sstri 0+∞
36 35 2 sselid φkAB
37 1 36 gsumfsum φfldkAB=kAB
38 29 32 37 3eqtr2d φ*kAB=kAB