Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017) (Proof shortened by AV, 25-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumpfinval.a | |
|
esumpfinval.b | |
||
Assertion | esumpfinval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumpfinval.a | |
|
2 | esumpfinval.b | |
|
3 | df-esum | |
|
4 | xrge0base | |
|
5 | xrge00 | |
|
6 | xrge0cmn | |
|
7 | 6 | a1i | |
8 | xrge0tps | |
|
9 | 8 | a1i | |
10 | icossicc | |
|
11 | 10 2 | sselid | |
12 | 11 | fmpttd | |
13 | eqid | |
|
14 | c0ex | |
|
15 | 14 | a1i | |
16 | 13 1 2 15 | fsuppmptdm | |
17 | xrge0topn | |
|
18 | 17 | eqcomi | |
19 | xrhaus | |
|
20 | ovex | |
|
21 | resthaus | |
|
22 | 19 20 21 | mp2an | |
23 | 22 | a1i | |
24 | 4 5 7 9 1 12 16 18 23 | haustsmsid | |
25 | 24 | unieqd | |
26 | 3 25 | eqtrid | |
27 | ovex | |
|
28 | 27 | unisn | |
29 | 26 28 | eqtrdi | |
30 | 2 | fmpttd | |
31 | esumpfinvallem | |
|
32 | 1 30 31 | syl2anc | |
33 | rge0ssre | |
|
34 | ax-resscn | |
|
35 | 33 34 | sstri | |
36 | 35 2 | sselid | |
37 | 1 36 | gsumfsum | |
38 | 29 32 37 | 3eqtr2d | |