Metamath Proof Explorer


Theorem esumpfinvalf

Description: Same as esumpfinval , minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses esumpfinvalf.1 _ k A
esumpfinvalf.2 k φ
esumpfinvalf.a φ A Fin
esumpfinvalf.b φ k A B 0 +∞
Assertion esumpfinvalf φ * k A B = k A B

Proof

Step Hyp Ref Expression
1 esumpfinvalf.1 _ k A
2 esumpfinvalf.2 k φ
3 esumpfinvalf.a φ A Fin
4 esumpfinvalf.b φ k A B 0 +∞
5 df-esum * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B
6 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
7 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
8 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
9 8 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
10 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
11 10 a1i φ 𝑠 * 𝑠 0 +∞ TopSp
12 nfcv _ k 0 +∞
13 icossicc 0 +∞ 0 +∞
14 13 4 sselid φ k A B 0 +∞
15 eqid k A B = k A B
16 2 1 12 14 15 fmptdF φ k A B : A 0 +∞
17 c0ex 0 V
18 17 a1i φ 0 V
19 16 3 18 fdmfifsupp φ finSupp 0 k A B
20 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
21 20 eqcomi ordTop 𝑡 0 +∞ = TopOpen 𝑠 * 𝑠 0 +∞
22 xrhaus ordTop Haus
23 ovex 0 +∞ V
24 resthaus ordTop Haus 0 +∞ V ordTop 𝑡 0 +∞ Haus
25 22 23 24 mp2an ordTop 𝑡 0 +∞ Haus
26 25 a1i φ ordTop 𝑡 0 +∞ Haus
27 6 7 9 11 3 16 19 21 26 haustsmsid φ 𝑠 * 𝑠 0 +∞ tsums k A B = 𝑠 * 𝑠 0 +∞ k A B
28 27 unieqd φ 𝑠 * 𝑠 0 +∞ tsums k A B = 𝑠 * 𝑠 0 +∞ k A B
29 5 28 eqtrid φ * k A B = 𝑠 * 𝑠 0 +∞ k A B
30 ovex 𝑠 * 𝑠 0 +∞ k A B V
31 30 unisn 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k A B
32 29 31 eqtrdi φ * k A B = 𝑠 * 𝑠 0 +∞ k A B
33 nfcv _ k 0 +∞
34 2 1 33 4 15 fmptdF φ k A B : A 0 +∞
35 esumpfinvallem A Fin k A B : A 0 +∞ fld k A B = 𝑠 * 𝑠 0 +∞ k A B
36 3 34 35 syl2anc φ fld k A B = 𝑠 * 𝑠 0 +∞ k A B
37 rge0ssre 0 +∞
38 ax-resscn
39 37 38 sstri 0 +∞
40 39 4 sselid φ k A B
41 40 sbt l k φ k A B
42 sbim l k φ k A B l k φ k A l k B
43 sban l k φ k A l k φ l k k A
44 2 sbf l k φ φ
45 1 clelsb1fw l k k A l A
46 44 45 anbi12i l k φ l k k A φ l A
47 43 46 bitri l k φ k A φ l A
48 sbsbc l k B [˙l / k]˙ B
49 sbcel1g l V [˙l / k]˙ B l / k B
50 49 elv [˙l / k]˙ B l / k B
51 48 50 bitri l k B l / k B
52 47 51 imbi12i l k φ k A l k B φ l A l / k B
53 42 52 bitri l k φ k A B φ l A l / k B
54 41 53 mpbi φ l A l / k B
55 3 54 gsumfsum φ fld l A l / k B = l A l / k B
56 nfcv _ l A
57 nfcv _ l B
58 nfcsb1v _ k l / k B
59 csbeq1a k = l B = l / k B
60 1 56 57 58 59 cbvmptf k A B = l A l / k B
61 60 oveq2i fld k A B = fld l A l / k B
62 59 56 1 57 58 cbvsum k A B = l A l / k B
63 55 61 62 3eqtr4g φ fld k A B = k A B
64 32 36 63 3eqtr2d φ * k A B = k A B