Step |
Hyp |
Ref |
Expression |
1 |
|
esumpfinvalf.1 |
|
2 |
|
esumpfinvalf.2 |
|
3 |
|
esumpfinvalf.a |
|
4 |
|
esumpfinvalf.b |
|
5 |
|
df-esum |
|
6 |
|
xrge0base |
|
7 |
|
xrge00 |
|
8 |
|
xrge0cmn |
|
9 |
8
|
a1i |
|
10 |
|
xrge0tps |
|
11 |
10
|
a1i |
|
12 |
|
nfcv |
|
13 |
|
icossicc |
|
14 |
13 4
|
sselid |
|
15 |
|
eqid |
|
16 |
2 1 12 14 15
|
fmptdF |
|
17 |
|
c0ex |
|
18 |
17
|
a1i |
|
19 |
16 3 18
|
fdmfifsupp |
|
20 |
|
xrge0topn |
|
21 |
20
|
eqcomi |
|
22 |
|
xrhaus |
|
23 |
|
ovex |
|
24 |
|
resthaus |
|
25 |
22 23 24
|
mp2an |
|
26 |
25
|
a1i |
|
27 |
6 7 9 11 3 16 19 21 26
|
haustsmsid |
|
28 |
27
|
unieqd |
|
29 |
5 28
|
eqtrid |
|
30 |
|
ovex |
|
31 |
30
|
unisn |
|
32 |
29 31
|
eqtrdi |
|
33 |
|
nfcv |
|
34 |
2 1 33 4 15
|
fmptdF |
|
35 |
|
esumpfinvallem |
|
36 |
3 34 35
|
syl2anc |
|
37 |
|
rge0ssre |
|
38 |
|
ax-resscn |
|
39 |
37 38
|
sstri |
|
40 |
39 4
|
sselid |
|
41 |
40
|
sbt |
|
42 |
|
sbim |
|
43 |
|
sban |
|
44 |
2
|
sbf |
|
45 |
1
|
clelsb1fw |
|
46 |
44 45
|
anbi12i |
|
47 |
43 46
|
bitri |
|
48 |
|
sbsbc |
|
49 |
|
sbcel1g |
|
50 |
49
|
elv |
|
51 |
48 50
|
bitri |
|
52 |
47 51
|
imbi12i |
|
53 |
42 52
|
bitri |
|
54 |
41 53
|
mpbi |
|
55 |
3 54
|
gsumfsum |
|
56 |
|
nfcv |
|
57 |
|
nfcv |
|
58 |
|
nfcsb1v |
|
59 |
|
csbeq1a |
|
60 |
1 56 57 58 59
|
cbvmptf |
|
61 |
60
|
oveq2i |
|
62 |
59 56 1 57 58
|
cbvsum |
|
63 |
55 61 62
|
3eqtr4g |
|
64 |
32 36 63
|
3eqtr2d |
|