Metamath Proof Explorer


Theorem esumpfinvalf

Description: Same as esumpfinval , minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses esumpfinvalf.1 𝑘 𝐴
esumpfinvalf.2 𝑘 𝜑
esumpfinvalf.a ( 𝜑𝐴 ∈ Fin )
esumpfinvalf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion esumpfinvalf ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 esumpfinvalf.1 𝑘 𝐴
2 esumpfinvalf.2 𝑘 𝜑
3 esumpfinvalf.a ( 𝜑𝐴 ∈ Fin )
4 esumpfinvalf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
5 df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
6 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
7 xrge00 0 = ( 0g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
8 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
9 8 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
10 xrge0tps ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp
11 10 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp )
12 nfcv 𝑘 ( 0 [,] +∞ )
13 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
14 13 4 sseldi ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
15 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
16 2 1 12 14 15 fmptdF ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
17 c0ex 0 ∈ V
18 17 a1i ( 𝜑 → 0 ∈ V )
19 16 3 18 fdmfifsupp ( 𝜑 → ( 𝑘𝐴𝐵 ) finSupp 0 )
20 xrge0topn ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
21 20 eqcomi ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
22 xrhaus ( ordTop ‘ ≤ ) ∈ Haus
23 ovex ( 0 [,] +∞ ) ∈ V
24 resthaus ( ( ( ordTop ‘ ≤ ) ∈ Haus ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus )
25 22 23 24 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus
26 25 a1i ( 𝜑 → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus )
27 6 7 9 11 3 16 19 21 26 haustsmsid ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
28 27 unieqd ( 𝜑 ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
29 5 28 syl5eq ( 𝜑 → Σ* 𝑘𝐴 𝐵 = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
30 ovex ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) ∈ V
31 30 unisn { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) )
32 29 31 eqtrdi ( 𝜑 → Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
33 nfcv 𝑘 ( 0 [,) +∞ )
34 2 1 33 4 15 fmptdF ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
35 esumpfinvallem ( ( 𝐴 ∈ Fin ∧ ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
36 3 34 35 syl2anc ( 𝜑 → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
37 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
38 ax-resscn ℝ ⊆ ℂ
39 37 38 sstri ( 0 [,) +∞ ) ⊆ ℂ
40 39 4 sseldi ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
41 40 sbt [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
42 sbim ( [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘𝐴 ) → [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ) )
43 sban ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘𝐴 ) ↔ ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘𝐴 ) )
44 2 sbf ( [ 𝑙 / 𝑘 ] 𝜑𝜑 )
45 1 clelsb3fw ( [ 𝑙 / 𝑘 ] 𝑘𝐴𝑙𝐴 )
46 44 45 anbi12i ( ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘𝐴 ) ↔ ( 𝜑𝑙𝐴 ) )
47 43 46 bitri ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑙𝐴 ) )
48 sbsbc ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ )
49 sbcel1g ( 𝑙 ∈ V → ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ 𝑙 / 𝑘 𝐵 ∈ ℂ ) )
50 49 elv ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ 𝑙 / 𝑘 𝐵 ∈ ℂ )
51 48 50 bitri ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ 𝑙 / 𝑘 𝐵 ∈ ℂ )
52 47 51 imbi12i ( ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘𝐴 ) → [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑙𝐴 ) → 𝑙 / 𝑘 𝐵 ∈ ℂ ) )
53 42 52 bitri ( [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑙𝐴 ) → 𝑙 / 𝑘 𝐵 ∈ ℂ ) )
54 41 53 mpbi ( ( 𝜑𝑙𝐴 ) → 𝑙 / 𝑘 𝐵 ∈ ℂ )
55 3 54 gsumfsum ( 𝜑 → ( ℂfld Σg ( 𝑙𝐴 𝑙 / 𝑘 𝐵 ) ) = Σ 𝑙𝐴 𝑙 / 𝑘 𝐵 )
56 nfcv 𝑙 𝐴
57 nfcv 𝑙 𝐵
58 nfcsb1v 𝑘 𝑙 / 𝑘 𝐵
59 csbeq1a ( 𝑘 = 𝑙𝐵 = 𝑙 / 𝑘 𝐵 )
60 1 56 57 58 59 cbvmptf ( 𝑘𝐴𝐵 ) = ( 𝑙𝐴 𝑙 / 𝑘 𝐵 )
61 60 oveq2i ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = ( ℂfld Σg ( 𝑙𝐴 𝑙 / 𝑘 𝐵 ) )
62 59 56 1 57 58 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑙𝐴 𝑙 / 𝑘 𝐵
63 55 61 62 3eqtr4g ( 𝜑 → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )
64 32 36 63 3eqtr2d ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐵 )