| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpfinvalf.1 |
⊢ Ⅎ 𝑘 𝐴 |
| 2 |
|
esumpfinvalf.2 |
⊢ Ⅎ 𝑘 𝜑 |
| 3 |
|
esumpfinvalf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
esumpfinvalf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 5 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 6 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 7 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 8 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 10 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 13 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 14 |
13 4
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 15 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 16 |
2 1 12 14 15
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 17 |
|
c0ex |
⊢ 0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 19 |
16 3 18
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) finSupp 0 ) |
| 20 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 21 |
20
|
eqcomi |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 22 |
|
xrhaus |
⊢ ( ordTop ‘ ≤ ) ∈ Haus |
| 23 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 24 |
|
resthaus |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Haus ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus ) |
| 25 |
22 23 24
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus ) |
| 27 |
6 7 9 11 3 16 19 21 26
|
haustsmsid |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = { ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) } ) |
| 28 |
27
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ { ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) } ) |
| 29 |
5 28
|
eqtrid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ { ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) } ) |
| 30 |
|
ovex |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ V |
| 31 |
30
|
unisn |
⊢ ∪ { ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) } = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 32 |
29 31
|
eqtrdi |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,) +∞ ) |
| 34 |
2 1 33 4 15
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 35 |
|
esumpfinvallem |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 36 |
3 34 35
|
syl2anc |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 37 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 38 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 39 |
37 38
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 40 |
39 4
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 41 |
40
|
sbt |
⊢ [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 42 |
|
sbim |
⊢ ( [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ) ) |
| 43 |
|
sban |
⊢ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ 𝐴 ) ) |
| 44 |
2
|
sbf |
⊢ ( [ 𝑙 / 𝑘 ] 𝜑 ↔ 𝜑 ) |
| 45 |
1
|
clelsb1fw |
⊢ ( [ 𝑙 / 𝑘 ] 𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴 ) |
| 46 |
44 45
|
anbi12i |
⊢ ( ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) ) |
| 47 |
43 46
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) ) |
| 48 |
|
sbsbc |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ) |
| 49 |
|
sbcel1g |
⊢ ( 𝑙 ∈ V → ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 50 |
49
|
elv |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 51 |
48 50
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 52 |
47 51
|
imbi12i |
⊢ ( ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → [ 𝑙 / 𝑘 ] 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 53 |
42 52
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 54 |
41 53
|
mpbi |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 55 |
3 54
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) = Σ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐴 |
| 57 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐵 |
| 58 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
| 59 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 60 |
1 56 57 58 59
|
cbvmptf |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 61 |
60
|
oveq2i |
⊢ ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ℂfld Σg ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 62 |
59 57 58
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
| 63 |
55 61 62
|
3eqtr4g |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 64 |
32 36 63
|
3eqtr2d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) |