Metamath Proof Explorer


Theorem esumpinfsum

Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumpinfsum.p 𝑘 𝜑
esumpinfsum.a 𝑘 𝐴
esumpinfsum.1 ( 𝜑𝐴𝑉 )
esumpinfsum.2 ( 𝜑 → ¬ 𝐴 ∈ Fin )
esumpinfsum.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumpinfsum.4 ( ( 𝜑𝑘𝐴 ) → 𝑀𝐵 )
esumpinfsum.5 ( 𝜑𝑀 ∈ ℝ* )
esumpinfsum.6 ( 𝜑 → 0 < 𝑀 )
Assertion esumpinfsum ( 𝜑 → Σ* 𝑘𝐴 𝐵 = +∞ )

Proof

Step Hyp Ref Expression
1 esumpinfsum.p 𝑘 𝜑
2 esumpinfsum.a 𝑘 𝐴
3 esumpinfsum.1 ( 𝜑𝐴𝑉 )
4 esumpinfsum.2 ( 𝜑 → ¬ 𝐴 ∈ Fin )
5 esumpinfsum.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
6 esumpinfsum.4 ( ( 𝜑𝑘𝐴 ) → 𝑀𝐵 )
7 esumpinfsum.5 ( 𝜑𝑀 ∈ ℝ* )
8 esumpinfsum.6 ( 𝜑 → 0 < 𝑀 )
9 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
10 5 ex ( 𝜑 → ( 𝑘𝐴𝐵 ∈ ( 0 [,] +∞ ) ) )
11 1 10 ralrimi ( 𝜑 → ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
12 2 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
13 3 11 12 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
14 9 13 sselid ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ℝ* )
15 0xr 0 ∈ ℝ*
16 xrltle ( ( 0 ∈ ℝ*𝑀 ∈ ℝ* ) → ( 0 < 𝑀 → 0 ≤ 𝑀 ) )
17 15 7 16 sylancr ( 𝜑 → ( 0 < 𝑀 → 0 ≤ 𝑀 ) )
18 8 17 mpd ( 𝜑 → 0 ≤ 𝑀 )
19 pnfge ( 𝑀 ∈ ℝ*𝑀 ≤ +∞ )
20 7 19 syl ( 𝜑𝑀 ≤ +∞ )
21 pnfxr +∞ ∈ ℝ*
22 elicc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑀 ∈ ( 0 [,] +∞ ) ↔ ( 𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀𝑀 ≤ +∞ ) ) )
23 15 21 22 mp2an ( 𝑀 ∈ ( 0 [,] +∞ ) ↔ ( 𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀𝑀 ≤ +∞ ) )
24 7 18 20 23 syl3anbrc ( 𝜑𝑀 ∈ ( 0 [,] +∞ ) )
25 nfcv 𝑘 𝑀
26 2 25 esumcst ( ( 𝐴𝑉𝑀 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝑀 = ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) )
27 3 24 26 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝑀 = ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) )
28 hashinf ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ )
29 3 4 28 syl2anc ( 𝜑 → ( ♯ ‘ 𝐴 ) = +∞ )
30 29 oveq1d ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) = ( +∞ ·e 𝑀 ) )
31 xmulpnf2 ( ( 𝑀 ∈ ℝ* ∧ 0 < 𝑀 ) → ( +∞ ·e 𝑀 ) = +∞ )
32 7 8 31 syl2anc ( 𝜑 → ( +∞ ·e 𝑀 ) = +∞ )
33 27 30 32 3eqtrd ( 𝜑 → Σ* 𝑘𝐴 𝑀 = +∞ )
34 24 adantr ( ( 𝜑𝑘𝐴 ) → 𝑀 ∈ ( 0 [,] +∞ ) )
35 1 2 3 34 5 6 esumlef ( 𝜑 → Σ* 𝑘𝐴 𝑀 ≤ Σ* 𝑘𝐴 𝐵 )
36 33 35 eqbrtrrd ( 𝜑 → +∞ ≤ Σ* 𝑘𝐴 𝐵 )
37 xgepnf ( Σ* 𝑘𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘𝐴 𝐵 ↔ Σ* 𝑘𝐴 𝐵 = +∞ ) )
38 37 biimpd ( Σ* 𝑘𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘𝐴 𝐵 → Σ* 𝑘𝐴 𝐵 = +∞ ) )
39 14 36 38 sylc ( 𝜑 → Σ* 𝑘𝐴 𝐵 = +∞ )