Step |
Hyp |
Ref |
Expression |
1 |
|
esumpinfsum.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumpinfsum.a |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
esumpinfsum.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
esumpinfsum.2 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ Fin ) |
5 |
|
esumpinfsum.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
6 |
|
esumpinfsum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑀 ≤ 𝐵 ) |
7 |
|
esumpinfsum.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
8 |
|
esumpinfsum.6 |
⊢ ( 𝜑 → 0 < 𝑀 ) |
9 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
10 |
5
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
11 |
1 10
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
12 |
2
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
13 |
3 11 12
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
14 |
9 13
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
|
xrltle |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
17 |
15 7 16
|
sylancr |
⊢ ( 𝜑 → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
18 |
8 17
|
mpd |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
19 |
|
pnfge |
⊢ ( 𝑀 ∈ ℝ* → 𝑀 ≤ +∞ ) |
20 |
7 19
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ +∞ ) |
21 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
22 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑀 ∈ ( 0 [,] +∞ ) ↔ ( 𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞ ) ) ) |
23 |
15 21 22
|
mp2an |
⊢ ( 𝑀 ∈ ( 0 [,] +∞ ) ↔ ( 𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞ ) ) |
24 |
7 18 20 23
|
syl3anbrc |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 [,] +∞ ) ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
26 |
2 25
|
esumcst |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑀 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝑀 = ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) ) |
27 |
3 24 26
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝑀 = ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) ) |
28 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
29 |
3 4 28
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = +∞ ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ·e 𝑀 ) = ( +∞ ·e 𝑀 ) ) |
31 |
|
xmulpnf2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 0 < 𝑀 ) → ( +∞ ·e 𝑀 ) = +∞ ) |
32 |
7 8 31
|
syl2anc |
⊢ ( 𝜑 → ( +∞ ·e 𝑀 ) = +∞ ) |
33 |
27 30 32
|
3eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝑀 = +∞ ) |
34 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑀 ∈ ( 0 [,] +∞ ) ) |
35 |
1 2 3 34 5 6
|
esumlef |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝑀 ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
36 |
33 35
|
eqbrtrrd |
⊢ ( 𝜑 → +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
37 |
|
xgepnf |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ↔ Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) ) |
38 |
37
|
biimpd |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 → Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) ) |
39 |
14 36 38
|
sylc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) |