| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpinfsum.p |
|- F/ k ph |
| 2 |
|
esumpinfsum.a |
|- F/_ k A |
| 3 |
|
esumpinfsum.1 |
|- ( ph -> A e. V ) |
| 4 |
|
esumpinfsum.2 |
|- ( ph -> -. A e. Fin ) |
| 5 |
|
esumpinfsum.3 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 6 |
|
esumpinfsum.4 |
|- ( ( ph /\ k e. A ) -> M <_ B ) |
| 7 |
|
esumpinfsum.5 |
|- ( ph -> M e. RR* ) |
| 8 |
|
esumpinfsum.6 |
|- ( ph -> 0 < M ) |
| 9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 10 |
5
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
| 11 |
1 10
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 12 |
2
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 13 |
3 11 12
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 14 |
9 13
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
|
xrltle |
|- ( ( 0 e. RR* /\ M e. RR* ) -> ( 0 < M -> 0 <_ M ) ) |
| 17 |
15 7 16
|
sylancr |
|- ( ph -> ( 0 < M -> 0 <_ M ) ) |
| 18 |
8 17
|
mpd |
|- ( ph -> 0 <_ M ) |
| 19 |
|
pnfge |
|- ( M e. RR* -> M <_ +oo ) |
| 20 |
7 19
|
syl |
|- ( ph -> M <_ +oo ) |
| 21 |
|
pnfxr |
|- +oo e. RR* |
| 22 |
|
elicc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( M e. ( 0 [,] +oo ) <-> ( M e. RR* /\ 0 <_ M /\ M <_ +oo ) ) ) |
| 23 |
15 21 22
|
mp2an |
|- ( M e. ( 0 [,] +oo ) <-> ( M e. RR* /\ 0 <_ M /\ M <_ +oo ) ) |
| 24 |
7 18 20 23
|
syl3anbrc |
|- ( ph -> M e. ( 0 [,] +oo ) ) |
| 25 |
|
nfcv |
|- F/_ k M |
| 26 |
2 25
|
esumcst |
|- ( ( A e. V /\ M e. ( 0 [,] +oo ) ) -> sum* k e. A M = ( ( # ` A ) *e M ) ) |
| 27 |
3 24 26
|
syl2anc |
|- ( ph -> sum* k e. A M = ( ( # ` A ) *e M ) ) |
| 28 |
|
hashinf |
|- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 29 |
3 4 28
|
syl2anc |
|- ( ph -> ( # ` A ) = +oo ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( # ` A ) *e M ) = ( +oo *e M ) ) |
| 31 |
|
xmulpnf2 |
|- ( ( M e. RR* /\ 0 < M ) -> ( +oo *e M ) = +oo ) |
| 32 |
7 8 31
|
syl2anc |
|- ( ph -> ( +oo *e M ) = +oo ) |
| 33 |
27 30 32
|
3eqtrd |
|- ( ph -> sum* k e. A M = +oo ) |
| 34 |
24
|
adantr |
|- ( ( ph /\ k e. A ) -> M e. ( 0 [,] +oo ) ) |
| 35 |
1 2 3 34 5 6
|
esumlef |
|- ( ph -> sum* k e. A M <_ sum* k e. A B ) |
| 36 |
33 35
|
eqbrtrrd |
|- ( ph -> +oo <_ sum* k e. A B ) |
| 37 |
|
xgepnf |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B <-> sum* k e. A B = +oo ) ) |
| 38 |
37
|
biimpd |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B -> sum* k e. A B = +oo ) ) |
| 39 |
14 36 38
|
sylc |
|- ( ph -> sum* k e. A B = +oo ) |