| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpcvgval.1 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 2 |
|
esumpcvgval.2 |
|- ( k = l -> A = B ) |
| 3 |
|
esumpcvgval.3 |
|- ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) e. dom ~~> ) |
| 4 |
|
xrltso |
|- < Or RR* |
| 5 |
4
|
a1i |
|- ( ph -> < Or RR* ) |
| 6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 7 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 8 |
|
eqcom |
|- ( k = l <-> l = k ) |
| 9 |
|
eqcom |
|- ( A = B <-> B = A ) |
| 10 |
2 8 9
|
3imtr3i |
|- ( l = k -> B = A ) |
| 11 |
10
|
cbvmptv |
|- ( l e. NN |-> B ) = ( k e. NN |-> A ) |
| 12 |
1 11
|
fmptd |
|- ( ph -> ( l e. NN |-> B ) : NN --> ( 0 [,) +oo ) ) |
| 13 |
12
|
ffvelcdmda |
|- ( ( ph /\ x e. NN ) -> ( ( l e. NN |-> B ) ` x ) e. ( 0 [,) +oo ) ) |
| 14 |
|
elrege0 |
|- ( ( ( l e. NN |-> B ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( l e. NN |-> B ) ` x ) e. RR /\ 0 <_ ( ( l e. NN |-> B ) ` x ) ) ) |
| 15 |
14
|
simplbi |
|- ( ( ( l e. NN |-> B ) ` x ) e. ( 0 [,) +oo ) -> ( ( l e. NN |-> B ) ` x ) e. RR ) |
| 16 |
13 15
|
syl |
|- ( ( ph /\ x e. NN ) -> ( ( l e. NN |-> B ) ` x ) e. RR ) |
| 17 |
6 7 16
|
serfre |
|- ( ph -> seq 1 ( + , ( l e. NN |-> B ) ) : NN --> RR ) |
| 18 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( l e. NN |-> B ) : NN --> ( 0 [,) +oo ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 20 |
19
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 21 |
18 20
|
ffvelcdmd |
|- ( ( ph /\ n e. NN ) -> ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. ( 0 [,) +oo ) ) |
| 22 |
|
elrege0 |
|- ( ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. ( 0 [,) +oo ) <-> ( ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. RR /\ 0 <_ ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) ) |
| 23 |
22
|
simprbi |
|- ( ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. ( 0 [,) +oo ) -> 0 <_ ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) |
| 24 |
21 23
|
syl |
|- ( ( ph /\ n e. NN ) -> 0 <_ ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) |
| 25 |
17
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) e. RR ) |
| 26 |
22
|
simplbi |
|- ( ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. ( 0 [,) +oo ) -> ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. RR ) |
| 27 |
21 26
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( l e. NN |-> B ) ` ( n + 1 ) ) e. RR ) |
| 28 |
25 27
|
addge01d |
|- ( ( ph /\ n e. NN ) -> ( 0 <_ ( ( l e. NN |-> B ) ` ( n + 1 ) ) <-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) + ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) ) ) |
| 29 |
24 28
|
mpbid |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) + ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) ) |
| 30 |
19 6
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 31 |
|
seqp1 |
|- ( n e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` ( n + 1 ) ) = ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) + ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` ( n + 1 ) ) = ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) + ( ( l e. NN |-> B ) ` ( n + 1 ) ) ) ) |
| 33 |
29 32
|
breqtrrd |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ ( seq 1 ( + , ( l e. NN |-> B ) ) ` ( n + 1 ) ) ) |
| 34 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 35 |
11
|
fvmpt2 |
|- ( ( k e. NN /\ A e. ( 0 [,) +oo ) ) -> ( ( l e. NN |-> B ) ` k ) = A ) |
| 36 |
34 1 35
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( l e. NN |-> B ) ` k ) = A ) |
| 37 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 38 |
37 1
|
sselid |
|- ( ( ph /\ k e. NN ) -> A e. RR ) |
| 39 |
17
|
feqmptd |
|- ( ph -> seq 1 ( + , ( l e. NN |-> B ) ) = ( n e. NN |-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) ) |
| 40 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
| 41 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
| 42 |
41
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 43 |
40 42 36
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( l e. NN |-> B ) ` k ) = A ) |
| 44 |
38
|
recnd |
|- ( ( ph /\ k e. NN ) -> A e. CC ) |
| 45 |
40 42 44
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. CC ) |
| 46 |
43 30 45
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 47 |
46
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) = sum_ k e. ( 1 ... n ) A ) |
| 48 |
47
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) ) |
| 49 |
39 48
|
eqtr2d |
|- ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) = seq 1 ( + , ( l e. NN |-> B ) ) ) |
| 50 |
49 3
|
eqeltrrd |
|- ( ph -> seq 1 ( + , ( l e. NN |-> B ) ) e. dom ~~> ) |
| 51 |
6 7 36 38 50
|
isumrecl |
|- ( ph -> sum_ k e. NN A e. RR ) |
| 52 |
|
1zzd |
|- ( ( ph /\ n e. NN ) -> 1 e. ZZ ) |
| 53 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
| 54 |
|
fzssuz |
|- ( 1 ... n ) C_ ( ZZ>= ` 1 ) |
| 55 |
54 6
|
sseqtrri |
|- ( 1 ... n ) C_ NN |
| 56 |
55
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
| 57 |
36
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN ) -> ( ( l e. NN |-> B ) ` k ) = A ) |
| 58 |
38
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN ) -> A e. RR ) |
| 59 |
1
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 60 |
|
elrege0 |
|- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
| 61 |
60
|
simprbi |
|- ( A e. ( 0 [,) +oo ) -> 0 <_ A ) |
| 62 |
59 61
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN ) -> 0 <_ A ) |
| 63 |
50
|
adantr |
|- ( ( ph /\ n e. NN ) -> seq 1 ( + , ( l e. NN |-> B ) ) e. dom ~~> ) |
| 64 |
6 52 53 56 57 58 62 63
|
isumless |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) A <_ sum_ k e. NN A ) |
| 65 |
46 64
|
eqbrtrrd |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ sum_ k e. NN A ) |
| 66 |
65
|
ralrimiva |
|- ( ph -> A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ sum_ k e. NN A ) |
| 67 |
|
brralrspcev |
|- ( ( sum_ k e. NN A e. RR /\ A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ sum_ k e. NN A ) -> E. s e. RR A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s ) |
| 68 |
51 66 67
|
syl2anc |
|- ( ph -> E. s e. RR A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s ) |
| 69 |
6 7 17 33 68
|
climsup |
|- ( ph -> seq 1 ( + , ( l e. NN |-> B ) ) ~~> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 70 |
6 7 69 25
|
climrecl |
|- ( ph -> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR ) |
| 71 |
70
|
rexrd |
|- ( ph -> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR* ) |
| 72 |
|
eqid |
|- ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) = ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) |
| 73 |
|
sumex |
|- sum_ k e. b A e. _V |
| 74 |
72 73
|
elrnmpti |
|- ( x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) <-> E. b e. ( ~P NN i^i Fin ) x = sum_ k e. b A ) |
| 75 |
|
ssnnssfz |
|- ( b e. ( ~P NN i^i Fin ) -> E. m e. NN b C_ ( 1 ... m ) ) |
| 76 |
|
fzfid |
|- ( ( ph /\ b C_ ( 1 ... m ) ) -> ( 1 ... m ) e. Fin ) |
| 77 |
|
elfznn |
|- ( k e. ( 1 ... m ) -> k e. NN ) |
| 78 |
77 1
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... m ) ) -> A e. ( 0 [,) +oo ) ) |
| 79 |
60
|
simplbi |
|- ( A e. ( 0 [,) +oo ) -> A e. RR ) |
| 80 |
78 79
|
syl |
|- ( ( ph /\ k e. ( 1 ... m ) ) -> A e. RR ) |
| 81 |
80
|
adantlr |
|- ( ( ( ph /\ b C_ ( 1 ... m ) ) /\ k e. ( 1 ... m ) ) -> A e. RR ) |
| 82 |
78 61
|
syl |
|- ( ( ph /\ k e. ( 1 ... m ) ) -> 0 <_ A ) |
| 83 |
82
|
adantlr |
|- ( ( ( ph /\ b C_ ( 1 ... m ) ) /\ k e. ( 1 ... m ) ) -> 0 <_ A ) |
| 84 |
|
simpr |
|- ( ( ph /\ b C_ ( 1 ... m ) ) -> b C_ ( 1 ... m ) ) |
| 85 |
76 81 83 84
|
fsumless |
|- ( ( ph /\ b C_ ( 1 ... m ) ) -> sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) |
| 86 |
85
|
ex |
|- ( ph -> ( b C_ ( 1 ... m ) -> sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) ) |
| 87 |
86
|
reximdv |
|- ( ph -> ( E. m e. NN b C_ ( 1 ... m ) -> E. m e. NN sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) ) |
| 88 |
87
|
imp |
|- ( ( ph /\ E. m e. NN b C_ ( 1 ... m ) ) -> E. m e. NN sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) |
| 89 |
75 88
|
sylan2 |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> E. m e. NN sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) |
| 90 |
|
breq1 |
|- ( x = sum_ k e. b A -> ( x <_ sum_ k e. ( 1 ... m ) A <-> sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) ) |
| 91 |
90
|
rexbidv |
|- ( x = sum_ k e. b A -> ( E. m e. NN x <_ sum_ k e. ( 1 ... m ) A <-> E. m e. NN sum_ k e. b A <_ sum_ k e. ( 1 ... m ) A ) ) |
| 92 |
89 91
|
syl5ibrcom |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> ( x = sum_ k e. b A -> E. m e. NN x <_ sum_ k e. ( 1 ... m ) A ) ) |
| 93 |
92
|
rexlimdva |
|- ( ph -> ( E. b e. ( ~P NN i^i Fin ) x = sum_ k e. b A -> E. m e. NN x <_ sum_ k e. ( 1 ... m ) A ) ) |
| 94 |
93
|
imp |
|- ( ( ph /\ E. b e. ( ~P NN i^i Fin ) x = sum_ k e. b A ) -> E. m e. NN x <_ sum_ k e. ( 1 ... m ) A ) |
| 95 |
74 94
|
sylan2b |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> E. m e. NN x <_ sum_ k e. ( 1 ... m ) A ) |
| 96 |
|
simpr |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ x = sum_ k e. b A ) -> x = sum_ k e. b A ) |
| 97 |
|
inss2 |
|- ( ~P NN i^i Fin ) C_ Fin |
| 98 |
|
simpr |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> b e. ( ~P NN i^i Fin ) ) |
| 99 |
97 98
|
sselid |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> b e. Fin ) |
| 100 |
|
simpll |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> ph ) |
| 101 |
|
inss1 |
|- ( ~P NN i^i Fin ) C_ ~P NN |
| 102 |
|
simplr |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> b e. ( ~P NN i^i Fin ) ) |
| 103 |
101 102
|
sselid |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> b e. ~P NN ) |
| 104 |
103
|
elpwid |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> b C_ NN ) |
| 105 |
|
simpr |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> k e. b ) |
| 106 |
104 105
|
sseldd |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> k e. NN ) |
| 107 |
100 106 1
|
syl2anc |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> A e. ( 0 [,) +oo ) ) |
| 108 |
107 79
|
syl |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> A e. RR ) |
| 109 |
99 108
|
fsumrecl |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> sum_ k e. b A e. RR ) |
| 110 |
109
|
adantr |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ x = sum_ k e. b A ) -> sum_ k e. b A e. RR ) |
| 111 |
96 110
|
eqeltrd |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ x = sum_ k e. b A ) -> x e. RR ) |
| 112 |
111
|
r19.29an |
|- ( ( ph /\ E. b e. ( ~P NN i^i Fin ) x = sum_ k e. b A ) -> x e. RR ) |
| 113 |
74 112
|
sylan2b |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> x e. RR ) |
| 114 |
113
|
adantr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> x e. RR ) |
| 115 |
|
fzfid |
|- ( ph -> ( 1 ... m ) e. Fin ) |
| 116 |
115 80
|
fsumrecl |
|- ( ph -> sum_ k e. ( 1 ... m ) A e. RR ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> sum_ k e. ( 1 ... m ) A e. RR ) |
| 118 |
70
|
ad2antrr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR ) |
| 119 |
|
simprr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> x <_ sum_ k e. ( 1 ... m ) A ) |
| 120 |
17
|
frnd |
|- ( ph -> ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR ) |
| 121 |
120
|
ad2antrr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR ) |
| 122 |
|
1nn |
|- 1 e. NN |
| 123 |
122
|
ne0ii |
|- NN =/= (/) |
| 124 |
|
dm0rn0 |
|- ( dom seq 1 ( + , ( l e. NN |-> B ) ) = (/) <-> ran seq 1 ( + , ( l e. NN |-> B ) ) = (/) ) |
| 125 |
17
|
fdmd |
|- ( ph -> dom seq 1 ( + , ( l e. NN |-> B ) ) = NN ) |
| 126 |
125
|
eqeq1d |
|- ( ph -> ( dom seq 1 ( + , ( l e. NN |-> B ) ) = (/) <-> NN = (/) ) ) |
| 127 |
124 126
|
bitr3id |
|- ( ph -> ( ran seq 1 ( + , ( l e. NN |-> B ) ) = (/) <-> NN = (/) ) ) |
| 128 |
127
|
necon3bid |
|- ( ph -> ( ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) <-> NN =/= (/) ) ) |
| 129 |
123 128
|
mpbiri |
|- ( ph -> ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) ) |
| 130 |
129
|
ad2antrr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) ) |
| 131 |
|
1z |
|- 1 e. ZZ |
| 132 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , ( l e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) ) |
| 133 |
131 132
|
ax-mp |
|- seq 1 ( + , ( l e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) |
| 134 |
6
|
fneq2i |
|- ( seq 1 ( + , ( l e. NN |-> B ) ) Fn NN <-> seq 1 ( + , ( l e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) ) |
| 135 |
133 134
|
mpbir |
|- seq 1 ( + , ( l e. NN |-> B ) ) Fn NN |
| 136 |
|
dffn5 |
|- ( seq 1 ( + , ( l e. NN |-> B ) ) Fn NN <-> seq 1 ( + , ( l e. NN |-> B ) ) = ( n e. NN |-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) ) |
| 137 |
135 136
|
mpbi |
|- seq 1 ( + , ( l e. NN |-> B ) ) = ( n e. NN |-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 138 |
|
fvex |
|- ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) e. _V |
| 139 |
137 138
|
elrnmpti |
|- ( z e. ran seq 1 ( + , ( l e. NN |-> B ) ) <-> E. n e. NN z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 140 |
|
r19.29 |
|- ( ( A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ E. n e. NN z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> E. n e. NN ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) ) |
| 141 |
|
breq1 |
|- ( z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) -> ( z <_ s <-> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s ) ) |
| 142 |
141
|
biimparc |
|- ( ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> z <_ s ) |
| 143 |
142
|
rexlimivw |
|- ( E. n e. NN ( ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> z <_ s ) |
| 144 |
140 143
|
syl |
|- ( ( A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ E. n e. NN z = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> z <_ s ) |
| 145 |
139 144
|
sylan2b |
|- ( ( A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s /\ z e. ran seq 1 ( + , ( l e. NN |-> B ) ) ) -> z <_ s ) |
| 146 |
145
|
ralrimiva |
|- ( A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s -> A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) |
| 147 |
146
|
reximi |
|- ( E. s e. RR A. n e. NN ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) <_ s -> E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) |
| 148 |
68 147
|
syl |
|- ( ph -> E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) |
| 149 |
148
|
ad2antrr |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) |
| 150 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
| 151 |
|
simpll |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> ph ) |
| 152 |
77
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> k e. NN ) |
| 153 |
151 152 36
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> ( ( l e. NN |-> B ) ` k ) = A ) |
| 154 |
150 6
|
eleqtrdi |
|- ( ( ph /\ m e. NN ) -> m e. ( ZZ>= ` 1 ) ) |
| 155 |
151 152 1
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> A e. ( 0 [,) +oo ) ) |
| 156 |
155 79
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> A e. RR ) |
| 157 |
156
|
recnd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 1 ... m ) ) -> A e. CC ) |
| 158 |
153 154 157
|
fsumser |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` m ) ) |
| 159 |
|
fveq2 |
|- ( n = m -> ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) = ( seq 1 ( + , ( l e. NN |-> B ) ) ` m ) ) |
| 160 |
159
|
rspceeqv |
|- ( ( m e. NN /\ sum_ k e. ( 1 ... m ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` m ) ) -> E. n e. NN sum_ k e. ( 1 ... m ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 161 |
150 158 160
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> E. n e. NN sum_ k e. ( 1 ... m ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 162 |
137 138
|
elrnmpti |
|- ( sum_ k e. ( 1 ... m ) A e. ran seq 1 ( + , ( l e. NN |-> B ) ) <-> E. n e. NN sum_ k e. ( 1 ... m ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 163 |
161 162
|
sylibr |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) A e. ran seq 1 ( + , ( l e. NN |-> B ) ) ) |
| 164 |
163
|
ad2ant2r |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> sum_ k e. ( 1 ... m ) A e. ran seq 1 ( + , ( l e. NN |-> B ) ) ) |
| 165 |
|
suprub |
|- ( ( ( ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR /\ ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) /\ E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) /\ sum_ k e. ( 1 ... m ) A e. ran seq 1 ( + , ( l e. NN |-> B ) ) ) -> sum_ k e. ( 1 ... m ) A <_ sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 166 |
121 130 149 164 165
|
syl31anc |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> sum_ k e. ( 1 ... m ) A <_ sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 167 |
114 117 118 119 166
|
letrd |
|- ( ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) /\ ( m e. NN /\ x <_ sum_ k e. ( 1 ... m ) A ) ) -> x <_ sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 168 |
95 167
|
rexlimddv |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> x <_ sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 169 |
70
|
adantr |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR ) |
| 170 |
113 169
|
lenltd |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> ( x <_ sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) <-> -. sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) < x ) ) |
| 171 |
168 170
|
mpbid |
|- ( ( ph /\ x e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) -> -. sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) < x ) |
| 172 |
|
simpr1r |
|- ( ( ph /\ ( ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) /\ 0 <_ x /\ x = +oo ) ) -> x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 173 |
172
|
3anassrs |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 174 |
71
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR* ) |
| 175 |
|
pnfnlt |
|- ( sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) e. RR* -> -. +oo < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 176 |
174 175
|
syl |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> -. +oo < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 177 |
|
breq1 |
|- ( x = +oo -> ( x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) <-> +oo < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) |
| 178 |
177
|
notbid |
|- ( x = +oo -> ( -. x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) <-> -. +oo < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) |
| 179 |
178
|
adantl |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> ( -. x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) <-> -. +oo < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) |
| 180 |
176 179
|
mpbird |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> -. x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 181 |
173 180
|
pm2.21dd |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x = +oo ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 182 |
|
simplll |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> ph ) |
| 183 |
|
simpr1l |
|- ( ( ph /\ ( ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) /\ 0 <_ x /\ x < +oo ) ) -> x e. RR* ) |
| 184 |
183
|
3anassrs |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> x e. RR* ) |
| 185 |
|
simplr |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> 0 <_ x ) |
| 186 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> x < +oo ) |
| 187 |
|
0xr |
|- 0 e. RR* |
| 188 |
|
pnfxr |
|- +oo e. RR* |
| 189 |
|
elico1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( x e. ( 0 [,) +oo ) <-> ( x e. RR* /\ 0 <_ x /\ x < +oo ) ) ) |
| 190 |
187 188 189
|
mp2an |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR* /\ 0 <_ x /\ x < +oo ) ) |
| 191 |
184 185 186 190
|
syl3anbrc |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> x e. ( 0 [,) +oo ) ) |
| 192 |
|
simpr1r |
|- ( ( ph /\ ( ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) /\ 0 <_ x /\ x < +oo ) ) -> x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 193 |
192
|
3anassrs |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 194 |
120
|
adantr |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR ) |
| 195 |
129
|
adantr |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) ) |
| 196 |
148
|
adantr |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) |
| 197 |
194 195 196
|
3jca |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> ( ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR /\ ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) /\ E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) ) |
| 198 |
|
simprl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> x e. ( 0 [,) +oo ) ) |
| 199 |
37 198
|
sselid |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> x e. RR ) |
| 200 |
|
simprr |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 201 |
|
suprlub |
|- ( ( ( ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR /\ ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) /\ E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) /\ x e. RR ) -> ( x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) <-> E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y ) ) |
| 202 |
201
|
biimpa |
|- ( ( ( ( ran seq 1 ( + , ( l e. NN |-> B ) ) C_ RR /\ ran seq 1 ( + , ( l e. NN |-> B ) ) =/= (/) /\ E. s e. RR A. z e. ran seq 1 ( + , ( l e. NN |-> B ) ) z <_ s ) /\ x e. RR ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) -> E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y ) |
| 203 |
197 199 200 202
|
syl21anc |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y ) |
| 204 |
41
|
ssriv |
|- ( 1 ... n ) C_ NN |
| 205 |
|
ovex |
|- ( 1 ... n ) e. _V |
| 206 |
205
|
elpw |
|- ( ( 1 ... n ) e. ~P NN <-> ( 1 ... n ) C_ NN ) |
| 207 |
204 206
|
mpbir |
|- ( 1 ... n ) e. ~P NN |
| 208 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
| 209 |
|
elin |
|- ( ( 1 ... n ) e. ( ~P NN i^i Fin ) <-> ( ( 1 ... n ) e. ~P NN /\ ( 1 ... n ) e. Fin ) ) |
| 210 |
207 208 209
|
mpbir2an |
|- ( 1 ... n ) e. ( ~P NN i^i Fin ) |
| 211 |
210
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> ( 1 ... n ) e. ( ~P NN i^i Fin ) ) |
| 212 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 213 |
46
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> sum_ k e. ( 1 ... n ) A = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 214 |
212 213
|
eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> y = sum_ k e. ( 1 ... n ) A ) |
| 215 |
|
sumeq1 |
|- ( b = ( 1 ... n ) -> sum_ k e. b A = sum_ k e. ( 1 ... n ) A ) |
| 216 |
215
|
rspceeqv |
|- ( ( ( 1 ... n ) e. ( ~P NN i^i Fin ) /\ y = sum_ k e. ( 1 ... n ) A ) -> E. b e. ( ~P NN i^i Fin ) y = sum_ k e. b A ) |
| 217 |
211 214 216
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) -> E. b e. ( ~P NN i^i Fin ) y = sum_ k e. b A ) |
| 218 |
217
|
ex |
|- ( ( ph /\ n e. NN ) -> ( y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) -> E. b e. ( ~P NN i^i Fin ) y = sum_ k e. b A ) ) |
| 219 |
218
|
rexlimdva |
|- ( ph -> ( E. n e. NN y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) -> E. b e. ( ~P NN i^i Fin ) y = sum_ k e. b A ) ) |
| 220 |
137 138
|
elrnmpti |
|- ( y e. ran seq 1 ( + , ( l e. NN |-> B ) ) <-> E. n e. NN y = ( seq 1 ( + , ( l e. NN |-> B ) ) ` n ) ) |
| 221 |
72 73
|
elrnmpti |
|- ( y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) <-> E. b e. ( ~P NN i^i Fin ) y = sum_ k e. b A ) |
| 222 |
219 220 221
|
3imtr4g |
|- ( ph -> ( y e. ran seq 1 ( + , ( l e. NN |-> B ) ) -> y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) ) |
| 223 |
222
|
ssrdv |
|- ( ph -> ran seq 1 ( + , ( l e. NN |-> B ) ) C_ ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) ) |
| 224 |
|
ssrexv |
|- ( ran seq 1 ( + , ( l e. NN |-> B ) ) C_ ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) -> ( E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) ) |
| 225 |
223 224
|
syl |
|- ( ph -> ( E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) ) |
| 226 |
225
|
imp |
|- ( ( ph /\ E. y e. ran seq 1 ( + , ( l e. NN |-> B ) ) x < y ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 227 |
203 226
|
syldan |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 228 |
182 191 193 227
|
syl12anc |
|- ( ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) /\ x < +oo ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 229 |
|
simplrl |
|- ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) -> x e. RR* ) |
| 230 |
|
xrlelttric |
|- ( ( +oo e. RR* /\ x e. RR* ) -> ( +oo <_ x \/ x < +oo ) ) |
| 231 |
188 230
|
mpan |
|- ( x e. RR* -> ( +oo <_ x \/ x < +oo ) ) |
| 232 |
|
xgepnf |
|- ( x e. RR* -> ( +oo <_ x <-> x = +oo ) ) |
| 233 |
232
|
orbi1d |
|- ( x e. RR* -> ( ( +oo <_ x \/ x < +oo ) <-> ( x = +oo \/ x < +oo ) ) ) |
| 234 |
231 233
|
mpbid |
|- ( x e. RR* -> ( x = +oo \/ x < +oo ) ) |
| 235 |
229 234
|
syl |
|- ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) -> ( x = +oo \/ x < +oo ) ) |
| 236 |
181 228 235
|
mpjaodan |
|- ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ 0 <_ x ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 237 |
|
0elpw |
|- (/) e. ~P NN |
| 238 |
|
0fi |
|- (/) e. Fin |
| 239 |
|
elin |
|- ( (/) e. ( ~P NN i^i Fin ) <-> ( (/) e. ~P NN /\ (/) e. Fin ) ) |
| 240 |
237 238 239
|
mpbir2an |
|- (/) e. ( ~P NN i^i Fin ) |
| 241 |
|
sum0 |
|- sum_ k e. (/) A = 0 |
| 242 |
241
|
eqcomi |
|- 0 = sum_ k e. (/) A |
| 243 |
|
sumeq1 |
|- ( b = (/) -> sum_ k e. b A = sum_ k e. (/) A ) |
| 244 |
243
|
rspceeqv |
|- ( ( (/) e. ( ~P NN i^i Fin ) /\ 0 = sum_ k e. (/) A ) -> E. b e. ( ~P NN i^i Fin ) 0 = sum_ k e. b A ) |
| 245 |
240 242 244
|
mp2an |
|- E. b e. ( ~P NN i^i Fin ) 0 = sum_ k e. b A |
| 246 |
72 73
|
elrnmpti |
|- ( 0 e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) <-> E. b e. ( ~P NN i^i Fin ) 0 = sum_ k e. b A ) |
| 247 |
245 246
|
mpbir |
|- 0 e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) |
| 248 |
|
breq2 |
|- ( y = 0 -> ( x < y <-> x < 0 ) ) |
| 249 |
248
|
rspcev |
|- ( ( 0 e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) /\ x < 0 ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 250 |
247 249
|
mpan |
|- ( x < 0 -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 251 |
250
|
adantl |
|- ( ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) /\ x < 0 ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 252 |
|
xrlelttric |
|- ( ( 0 e. RR* /\ x e. RR* ) -> ( 0 <_ x \/ x < 0 ) ) |
| 253 |
187 252
|
mpan |
|- ( x e. RR* -> ( 0 <_ x \/ x < 0 ) ) |
| 254 |
253
|
ad2antrl |
|- ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> ( 0 <_ x \/ x < 0 ) ) |
| 255 |
236 251 254
|
mpjaodan |
|- ( ( ph /\ ( x e. RR* /\ x < sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) ) -> E. y e. ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) x < y ) |
| 256 |
5 71 171 255
|
eqsupd |
|- ( ph -> sup ( ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) , RR* , < ) = sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 257 |
|
nfv |
|- F/ k ph |
| 258 |
|
nfcv |
|- F/_ k NN |
| 259 |
|
nnex |
|- NN e. _V |
| 260 |
259
|
a1i |
|- ( ph -> NN e. _V ) |
| 261 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 262 |
261 1
|
sselid |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 263 |
|
elex |
|- ( b e. ( ~P NN i^i Fin ) -> b e. _V ) |
| 264 |
263
|
adantl |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> b e. _V ) |
| 265 |
107
|
fmpttd |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> ( k e. b |-> A ) : b --> ( 0 [,) +oo ) ) |
| 266 |
|
esumpfinvallem |
|- ( ( b e. _V /\ ( k e. b |-> A ) : b --> ( 0 [,) +oo ) ) -> ( CCfld gsum ( k e. b |-> A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. b |-> A ) ) ) |
| 267 |
264 265 266
|
syl2anc |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> ( CCfld gsum ( k e. b |-> A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. b |-> A ) ) ) |
| 268 |
108
|
recnd |
|- ( ( ( ph /\ b e. ( ~P NN i^i Fin ) ) /\ k e. b ) -> A e. CC ) |
| 269 |
99 268
|
gsumfsum |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> ( CCfld gsum ( k e. b |-> A ) ) = sum_ k e. b A ) |
| 270 |
267 269
|
eqtr3d |
|- ( ( ph /\ b e. ( ~P NN i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. b |-> A ) ) = sum_ k e. b A ) |
| 271 |
257 258 260 262 270
|
esumval |
|- ( ph -> sum* k e. NN A = sup ( ran ( b e. ( ~P NN i^i Fin ) |-> sum_ k e. b A ) , RR* , < ) ) |
| 272 |
6 7 36 44 69
|
isumclim |
|- ( ph -> sum_ k e. NN A = sup ( ran seq 1 ( + , ( l e. NN |-> B ) ) , RR , < ) ) |
| 273 |
256 271 272
|
3eqtr4d |
|- ( ph -> sum* k e. NN A = sum_ k e. NN A ) |