Metamath Proof Explorer


Theorem esumpcvgval

Description: The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017)

Ref Expression
Hypotheses esumpcvgval.1 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) )
esumpcvgval.2 ( 𝑘 = 𝑙𝐴 = 𝐵 )
esumpcvgval.3 ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ )
Assertion esumpcvgval ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 )

Proof

Step Hyp Ref Expression
1 esumpcvgval.1 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) )
2 esumpcvgval.2 ( 𝑘 = 𝑙𝐴 = 𝐵 )
3 esumpcvgval.3 ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ )
4 xrltso < Or ℝ*
5 4 a1i ( 𝜑 → < Or ℝ* )
6 nnuz ℕ = ( ℤ ‘ 1 )
7 1zzd ( 𝜑 → 1 ∈ ℤ )
8 eqcom ( 𝑘 = 𝑙𝑙 = 𝑘 )
9 eqcom ( 𝐴 = 𝐵𝐵 = 𝐴 )
10 2 8 9 3imtr3i ( 𝑙 = 𝑘𝐵 = 𝐴 )
11 10 cbvmptv ( 𝑙 ∈ ℕ ↦ 𝐵 ) = ( 𝑘 ∈ ℕ ↦ 𝐴 )
12 1 11 fmptd ( 𝜑 → ( 𝑙 ∈ ℕ ↦ 𝐵 ) : ℕ ⟶ ( 0 [,) +∞ ) )
13 12 ffvelrnda ( ( 𝜑𝑥 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) )
14 elrege0 ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ) )
15 14 simplbi ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ℝ )
16 13 15 syl ( ( 𝜑𝑥 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑥 ) ∈ ℝ )
17 6 7 16 serfre ( 𝜑 → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) : ℕ ⟶ ℝ )
18 12 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑙 ∈ ℕ ↦ 𝐵 ) : ℕ ⟶ ( 0 [,) +∞ ) )
19 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
20 19 peano2nnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ )
21 18 20 ffvelrnd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 0 [,) +∞ ) )
22 elrege0 ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ) )
23 22 simprbi ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) )
24 21 23 syl ( ( 𝜑𝑛 ∈ ℕ ) → 0 ≤ ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) )
25 17 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ∈ ℝ )
26 22 simplbi ( ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 0 [,) +∞ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
27 21 26 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
28 25 27 addge01d ( ( 𝜑𝑛 ∈ ℕ ) → ( 0 ≤ ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ↔ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) + ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ) ) )
29 24 28 mpbid ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) + ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ) )
30 19 6 eleqtrdi ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
31 seqp1 ( 𝑛 ∈ ( ℤ ‘ 1 ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) + ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ) )
32 30 31 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) + ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ ( 𝑛 + 1 ) ) ) )
33 29 32 breqtrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) )
34 simpr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
35 11 fvmpt2 ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 )
36 34 1 35 syl2anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 )
37 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
38 37 1 sselid ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ )
39 17 feqmptd ( 𝜑 → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) )
40 simpll ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 )
41 elfznn ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ )
42 41 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
43 40 42 36 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 )
44 38 recnd ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ )
45 40 42 44 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ℂ )
46 43 30 45 fsumser ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
47 46 eqcomd ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 )
48 47 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
49 39 48 eqtr2d ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) )
50 49 3 eqeltrrd ( 𝜑 → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ∈ dom ⇝ )
51 6 7 36 38 50 isumrecl ( 𝜑 → Σ 𝑘 ∈ ℕ 𝐴 ∈ ℝ )
52 1zzd ( ( 𝜑𝑛 ∈ ℕ ) → 1 ∈ ℤ )
53 fzfid ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin )
54 fzssuz ( 1 ... 𝑛 ) ⊆ ( ℤ ‘ 1 )
55 54 6 sseqtrri ( 1 ... 𝑛 ) ⊆ ℕ
56 55 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ )
57 36 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 )
58 38 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ )
59 1 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) )
60 elrege0 ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )
61 60 simprbi ( 𝐴 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝐴 )
62 59 61 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ 𝐴 )
63 50 adantr ( ( 𝜑𝑛 ∈ ℕ ) → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ∈ dom ⇝ )
64 6 52 53 56 57 58 62 63 isumless ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ≤ Σ 𝑘 ∈ ℕ 𝐴 )
65 46 64 eqbrtrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ Σ 𝑘 ∈ ℕ 𝐴 )
66 65 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ Σ 𝑘 ∈ ℕ 𝐴 )
67 brralrspcev ( ( Σ 𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ Σ 𝑘 ∈ ℕ 𝐴 ) → ∃ 𝑠 ∈ ℝ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 )
68 51 66 67 syl2anc ( 𝜑 → ∃ 𝑠 ∈ ℝ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 )
69 6 7 17 33 68 climsup ( 𝜑 → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⇝ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
70 6 7 69 25 climrecl ( 𝜑 → sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ )
71 70 rexrd ( 𝜑 → sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ* )
72 eqid ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 )
73 sumex Σ 𝑘𝑏 𝐴 ∈ V
74 72 73 elrnmpti ( 𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑥 = Σ 𝑘𝑏 𝐴 )
75 ssnnssfz ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) → ∃ 𝑚 ∈ ℕ 𝑏 ⊆ ( 1 ... 𝑚 ) )
76 fzfid ( ( 𝜑𝑏 ⊆ ( 1 ... 𝑚 ) ) → ( 1 ... 𝑚 ) ∈ Fin )
77 elfznn ( 𝑘 ∈ ( 1 ... 𝑚 ) → 𝑘 ∈ ℕ )
78 77 1 sylan2 ( ( 𝜑𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) )
79 60 simplbi ( 𝐴 ∈ ( 0 [,) +∞ ) → 𝐴 ∈ ℝ )
80 78 79 syl ( ( 𝜑𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ℝ )
81 80 adantlr ( ( ( 𝜑𝑏 ⊆ ( 1 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ℝ )
82 78 61 syl ( ( 𝜑𝑘 ∈ ( 1 ... 𝑚 ) ) → 0 ≤ 𝐴 )
83 82 adantlr ( ( ( 𝜑𝑏 ⊆ ( 1 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 0 ≤ 𝐴 )
84 simpr ( ( 𝜑𝑏 ⊆ ( 1 ... 𝑚 ) ) → 𝑏 ⊆ ( 1 ... 𝑚 ) )
85 76 81 83 84 fsumless ( ( 𝜑𝑏 ⊆ ( 1 ... 𝑚 ) ) → Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
86 85 ex ( 𝜑 → ( 𝑏 ⊆ ( 1 ... 𝑚 ) → Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
87 86 reximdv ( 𝜑 → ( ∃ 𝑚 ∈ ℕ 𝑏 ⊆ ( 1 ... 𝑚 ) → ∃ 𝑚 ∈ ℕ Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
88 87 imp ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ 𝑏 ⊆ ( 1 ... 𝑚 ) ) → ∃ 𝑚 ∈ ℕ Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
89 75 88 sylan2 ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ∃ 𝑚 ∈ ℕ Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
90 breq1 ( 𝑥 = Σ 𝑘𝑏 𝐴 → ( 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ↔ Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
91 90 rexbidv ( 𝑥 = Σ 𝑘𝑏 𝐴 → ( ∃ 𝑚 ∈ ℕ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ↔ ∃ 𝑚 ∈ ℕ Σ 𝑘𝑏 𝐴 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
92 89 91 syl5ibrcom ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( 𝑥 = Σ 𝑘𝑏 𝐴 → ∃ 𝑚 ∈ ℕ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
93 92 rexlimdva ( 𝜑 → ( ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑥 = Σ 𝑘𝑏 𝐴 → ∃ 𝑚 ∈ ℕ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) )
94 93 imp ( ( 𝜑 ∧ ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑥 = Σ 𝑘𝑏 𝐴 ) → ∃ 𝑚 ∈ ℕ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
95 74 94 sylan2b ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
96 simpr ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑥 = Σ 𝑘𝑏 𝐴 ) → 𝑥 = Σ 𝑘𝑏 𝐴 )
97 inss2 ( 𝒫 ℕ ∩ Fin ) ⊆ Fin
98 simpr ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) )
99 97 98 sselid ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑏 ∈ Fin )
100 simpll ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝜑 )
101 inss1 ( 𝒫 ℕ ∩ Fin ) ⊆ 𝒫 ℕ
102 simplr ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) )
103 101 102 sselid ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝑏 ∈ 𝒫 ℕ )
104 103 elpwid ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝑏 ⊆ ℕ )
105 simpr ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝑘𝑏 )
106 104 105 sseldd ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝑘 ∈ ℕ )
107 100 106 1 syl2anc ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝐴 ∈ ( 0 [,) +∞ ) )
108 107 79 syl ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝐴 ∈ ℝ )
109 99 108 fsumrecl ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → Σ 𝑘𝑏 𝐴 ∈ ℝ )
110 109 adantr ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑥 = Σ 𝑘𝑏 𝐴 ) → Σ 𝑘𝑏 𝐴 ∈ ℝ )
111 96 110 eqeltrd ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑥 = Σ 𝑘𝑏 𝐴 ) → 𝑥 ∈ ℝ )
112 111 r19.29an ( ( 𝜑 ∧ ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑥 = Σ 𝑘𝑏 𝐴 ) → 𝑥 ∈ ℝ )
113 74 112 sylan2b ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → 𝑥 ∈ ℝ )
114 113 adantr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → 𝑥 ∈ ℝ )
115 fzfid ( 𝜑 → ( 1 ... 𝑚 ) ∈ Fin )
116 115 80 fsumrecl ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ℝ )
117 116 ad2antrr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ℝ )
118 70 ad2antrr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ )
119 simprr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 )
120 17 frnd ( 𝜑 → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ )
121 120 ad2antrr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ )
122 1nn 1 ∈ ℕ
123 122 ne0ii ℕ ≠ ∅
124 dm0rn0 ( dom seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ∅ ↔ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ∅ )
125 17 fdmd ( 𝜑 → dom seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ℕ )
126 125 eqeq1d ( 𝜑 → ( dom seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ∅ ↔ ℕ = ∅ ) )
127 124 126 bitr3id ( 𝜑 → ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ∅ ↔ ℕ = ∅ ) )
128 127 necon3bid ( 𝜑 → ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ ↔ ℕ ≠ ∅ ) )
129 123 128 mpbiri ( 𝜑 → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ )
130 129 ad2antrr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ )
131 1z 1 ∈ ℤ
132 seqfn ( 1 ∈ ℤ → seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ ‘ 1 ) )
133 131 132 ax-mp seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ ‘ 1 )
134 6 fneq2i ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ ‘ 1 ) )
135 133 134 mpbir seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ
136 dffn5 ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) )
137 135 136 mpbi seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
138 fvex ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ∈ V
139 137 138 elrnmpti ( 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
140 r19.29 ( ( ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 ∧ ∃ 𝑛 ∈ ℕ 𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ℕ ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) )
141 breq1 ( 𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) → ( 𝑧𝑠 ↔ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 ) )
142 141 biimparc ( ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑧𝑠 )
143 142 rexlimivw ( ∃ 𝑛 ∈ ℕ ( ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑧𝑠 )
144 140 143 syl ( ( ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 ∧ ∃ 𝑛 ∈ ℕ 𝑧 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑧𝑠 )
145 139 144 sylan2b ( ( ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ) → 𝑧𝑠 )
146 145 ralrimiva ( ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 → ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 )
147 146 reximi ( ∃ 𝑠 ∈ ℝ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ≤ 𝑠 → ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 )
148 68 147 syl ( 𝜑 → ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 )
149 148 ad2antrr ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 )
150 simpr ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ )
151 simpll ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝜑 )
152 77 adantl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑘 ∈ ℕ )
153 151 152 36 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑙 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 )
154 150 6 eleqtrdi ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ( ℤ ‘ 1 ) )
155 151 152 1 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) )
156 155 79 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ℝ )
157 156 recnd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ ℂ )
158 153 154 157 fsumser ( ( 𝜑𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑚 ) )
159 fveq2 ( 𝑛 = 𝑚 → ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑚 ) )
160 159 rspceeqv ( ( 𝑚 ∈ ℕ ∧ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑚 ) ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
161 150 158 160 syl2anc ( ( 𝜑𝑚 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
162 137 138 elrnmpti ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ↔ ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
163 161 162 sylibr ( ( 𝜑𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) )
164 163 ad2ant2r ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) )
165 suprub ( ( ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ ∧ ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 ) ∧ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ≤ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
166 121 130 149 164 165 syl31anc ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ≤ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
167 114 117 118 119 166 letrd ( ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ 𝑘 ∈ ( 1 ... 𝑚 ) 𝐴 ) ) → 𝑥 ≤ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
168 95 167 rexlimddv ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → 𝑥 ≤ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
169 70 adantr ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ )
170 113 169 lenltd ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → ( 𝑥 ≤ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ↔ ¬ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) < 𝑥 ) )
171 168 170 mpbid ( ( 𝜑𝑥 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) → ¬ sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) < 𝑥 )
172 simpr1r ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ∧ 0 ≤ 𝑥𝑥 = +∞ ) ) → 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
173 172 3anassrs ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
174 71 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ* )
175 pnfnlt ( sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ∈ ℝ* → ¬ +∞ < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
176 174 175 syl ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → ¬ +∞ < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
177 breq1 ( 𝑥 = +∞ → ( 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ↔ +∞ < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) )
178 177 notbid ( 𝑥 = +∞ → ( ¬ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ↔ ¬ +∞ < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) )
179 178 adantl ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → ( ¬ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ↔ ¬ +∞ < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) )
180 176 179 mpbird ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → ¬ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
181 173 180 pm2.21dd ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 = +∞ ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
182 simplll ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 𝜑 )
183 simpr1l ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ∧ 0 ≤ 𝑥𝑥 < +∞ ) ) → 𝑥 ∈ ℝ* )
184 183 3anassrs ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 𝑥 ∈ ℝ* )
185 simplr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 0 ≤ 𝑥 )
186 simpr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 𝑥 < +∞ )
187 0xr 0 ∈ ℝ*
188 pnfxr +∞ ∈ ℝ*
189 elico1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞ ) ) )
190 187 188 189 mp2an ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞ ) )
191 184 185 186 190 syl3anbrc ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 𝑥 ∈ ( 0 [,) +∞ ) )
192 simpr1r ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ∧ 0 ≤ 𝑥𝑥 < +∞ ) ) → 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
193 192 3anassrs ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
194 120 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ )
195 129 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ )
196 148 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 )
197 194 195 196 3jca ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ ∧ ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 ) )
198 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → 𝑥 ∈ ( 0 [,) +∞ ) )
199 37 198 sselid ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → 𝑥 ∈ ℝ )
200 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
201 suprlub ( ( ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ ∧ ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ↔ ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 ) )
202 201 biimpa ( ( ( ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ≠ ∅ ∧ ∃ 𝑠 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑧𝑠 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) → ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 )
203 197 199 200 202 syl21anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 )
204 41 ssriv ( 1 ... 𝑛 ) ⊆ ℕ
205 ovex ( 1 ... 𝑛 ) ∈ V
206 205 elpw ( ( 1 ... 𝑛 ) ∈ 𝒫 ℕ ↔ ( 1 ... 𝑛 ) ⊆ ℕ )
207 204 206 mpbir ( 1 ... 𝑛 ) ∈ 𝒫 ℕ
208 fzfi ( 1 ... 𝑛 ) ∈ Fin
209 elin ( ( 1 ... 𝑛 ) ∈ ( 𝒫 ℕ ∩ Fin ) ↔ ( ( 1 ... 𝑛 ) ∈ 𝒫 ℕ ∧ ( 1 ... 𝑛 ) ∈ Fin ) )
210 207 208 209 mpbir2an ( 1 ... 𝑛 ) ∈ ( 𝒫 ℕ ∩ Fin )
211 210 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → ( 1 ... 𝑛 ) ∈ ( 𝒫 ℕ ∩ Fin ) )
212 simpr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
213 46 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
214 212 213 eqtr4d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑦 = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 )
215 sumeq1 ( 𝑏 = ( 1 ... 𝑛 ) → Σ 𝑘𝑏 𝐴 = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 )
216 215 rspceeqv ( ( ( 1 ... 𝑛 ) ∈ ( 𝒫 ℕ ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑦 = Σ 𝑘𝑏 𝐴 )
217 211 214 216 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) → ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑦 = Σ 𝑘𝑏 𝐴 )
218 217 ex ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) → ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑦 = Σ 𝑘𝑏 𝐴 ) )
219 218 rexlimdva ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) → ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑦 = Σ 𝑘𝑏 𝐴 ) )
220 137 138 elrnmpti ( 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) )
221 72 73 elrnmpti ( 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 𝑦 = Σ 𝑘𝑏 𝐴 )
222 219 220 221 3imtr4g ( 𝜑 → ( 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) → 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ) )
223 222 ssrdv ( 𝜑 → ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) )
224 ssrexv ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) ⊆ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) → ( ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 ) )
225 223 224 syl ( 𝜑 → ( ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 ) )
226 225 imp ( ( 𝜑 ∧ ∃ 𝑦 ∈ ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) 𝑥 < 𝑦 ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
227 203 226 syldan ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
228 182 191 193 227 syl12anc ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 < +∞ ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
229 simplrl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* )
230 xrlelttric ( ( +∞ ∈ ℝ*𝑥 ∈ ℝ* ) → ( +∞ ≤ 𝑥𝑥 < +∞ ) )
231 188 230 mpan ( 𝑥 ∈ ℝ* → ( +∞ ≤ 𝑥𝑥 < +∞ ) )
232 xgepnf ( 𝑥 ∈ ℝ* → ( +∞ ≤ 𝑥𝑥 = +∞ ) )
233 232 orbi1d ( 𝑥 ∈ ℝ* → ( ( +∞ ≤ 𝑥𝑥 < +∞ ) ↔ ( 𝑥 = +∞ ∨ 𝑥 < +∞ ) ) )
234 231 233 mpbid ( 𝑥 ∈ ℝ* → ( 𝑥 = +∞ ∨ 𝑥 < +∞ ) )
235 229 234 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) → ( 𝑥 = +∞ ∨ 𝑥 < +∞ ) )
236 181 228 235 mpjaodan ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 0 ≤ 𝑥 ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
237 0elpw ∅ ∈ 𝒫 ℕ
238 0fin ∅ ∈ Fin
239 elin ( ∅ ∈ ( 𝒫 ℕ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ℕ ∧ ∅ ∈ Fin ) )
240 237 238 239 mpbir2an ∅ ∈ ( 𝒫 ℕ ∩ Fin )
241 sum0 Σ 𝑘 ∈ ∅ 𝐴 = 0
242 241 eqcomi 0 = Σ 𝑘 ∈ ∅ 𝐴
243 sumeq1 ( 𝑏 = ∅ → Σ 𝑘𝑏 𝐴 = Σ 𝑘 ∈ ∅ 𝐴 )
244 243 rspceeqv ( ( ∅ ∈ ( 𝒫 ℕ ∩ Fin ) ∧ 0 = Σ 𝑘 ∈ ∅ 𝐴 ) → ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 0 = Σ 𝑘𝑏 𝐴 )
245 240 242 244 mp2an 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 0 = Σ 𝑘𝑏 𝐴
246 72 73 elrnmpti ( 0 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) 0 = Σ 𝑘𝑏 𝐴 )
247 245 246 mpbir 0 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 )
248 breq2 ( 𝑦 = 0 → ( 𝑥 < 𝑦𝑥 < 0 ) )
249 248 rspcev ( ( 0 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) ∧ 𝑥 < 0 ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
250 247 249 mpan ( 𝑥 < 0 → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
251 250 adantl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) ∧ 𝑥 < 0 ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
252 xrlelttric ( ( 0 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 0 ≤ 𝑥𝑥 < 0 ) )
253 187 252 mpan ( 𝑥 ∈ ℝ* → ( 0 ≤ 𝑥𝑥 < 0 ) )
254 253 ad2antrl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ( 0 ≤ 𝑥𝑥 < 0 ) )
255 236 251 254 mpjaodan ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ*𝑥 < sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) ) ) → ∃ 𝑦 ∈ ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) 𝑥 < 𝑦 )
256 5 71 171 255 eqsupd ( 𝜑 → sup ( ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
257 nfv 𝑘 𝜑
258 nfcv 𝑘
259 nnex ℕ ∈ V
260 259 a1i ( 𝜑 → ℕ ∈ V )
261 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
262 261 1 sselid ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) )
263 elex ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) → 𝑏 ∈ V )
264 263 adantl ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑏 ∈ V )
265 107 fmpttd ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( 𝑘𝑏𝐴 ) : 𝑏 ⟶ ( 0 [,) +∞ ) )
266 esumpfinvallem ( ( 𝑏 ∈ V ∧ ( 𝑘𝑏𝐴 ) : 𝑏 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg ( 𝑘𝑏𝐴 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑏𝐴 ) ) )
267 264 265 266 syl2anc ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ℂfld Σg ( 𝑘𝑏𝐴 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑏𝐴 ) ) )
268 108 recnd ( ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘𝑏 ) → 𝐴 ∈ ℂ )
269 99 268 gsumfsum ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ℂfld Σg ( 𝑘𝑏𝐴 ) ) = Σ 𝑘𝑏 𝐴 )
270 267 269 eqtr3d ( ( 𝜑𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑏𝐴 ) ) = Σ 𝑘𝑏 𝐴 )
271 257 258 260 262 270 esumval ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘𝑏 𝐴 ) , ℝ* , < ) )
272 6 7 36 44 69 isumclim ( 𝜑 → Σ 𝑘 ∈ ℕ 𝐴 = sup ( ran seq 1 ( + , ( 𝑙 ∈ ℕ ↦ 𝐵 ) ) , ℝ , < ) )
273 256 271 272 3eqtr4d ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 )