Step |
Hyp |
Ref |
Expression |
1 |
|
esumpmono.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
esumpmono.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
esumpmono.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
4 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
5 |
|
ovexd |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ V ) |
6 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ℕ ) |
7 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
8 |
7 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑀 ) |
12 |
11
|
esumcl |
⊢ ( ( ( 1 ... 𝑀 ) ∈ V ∧ ∀ 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
13 |
5 10 12
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
14 |
4 13
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ℝ* ) |
15 |
14
|
xrleidd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ≤ Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ V ) |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑀 ∈ ℕ ) |
18 |
|
peano2nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) |
19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
20 |
18 19
|
eleqtrdi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
21 |
|
fzss1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
22 |
17 20 21
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
24 |
22 23
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) |
25 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
27 |
26 8
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝑀 + 1 ) ... 𝑁 ) |
30 |
29
|
esumcl |
⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ V ∧ ∀ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
31 |
16 28 30
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
32 |
|
elxrge0 |
⊢ ( Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ℝ* ∧ 0 ≤ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
33 |
32
|
simprbi |
⊢ ( Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) |
34 |
31 33
|
syl |
⊢ ( 𝜑 → 0 ≤ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) |
35 |
|
0xr |
⊢ 0 ∈ ℝ* |
36 |
35
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
37 |
4 31
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ℝ* ) |
38 |
|
xle2add |
⊢ ( ( ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) ∧ ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ℝ* ∧ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ∈ ℝ* ) ) → ( ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ≤ Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∧ 0 ≤ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) ≤ ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) ) |
39 |
14 36 14 37 38
|
syl22anc |
⊢ ( 𝜑 → ( ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ≤ Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∧ 0 ≤ Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) ≤ ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) ) |
40 |
15 34 39
|
mp2and |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) ≤ ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
41 |
|
xaddid1 |
⊢ ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ∈ ℝ* → ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) = Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ) |
42 |
14 41
|
syl |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) = Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ) |
43 |
42
|
eqcomd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 = ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 0 ) ) |
44 |
1 19
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
45 |
|
eluzfz |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
46 |
44 2 45
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
47 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
48 |
|
esumeq1 |
⊢ ( ( 1 ... 𝑁 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) 𝐴 = Σ* 𝑘 ∈ ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) 𝐴 ) |
49 |
46 47 48
|
3syl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) 𝐴 = Σ* 𝑘 ∈ ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) 𝐴 ) |
50 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
51 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
52 |
51
|
ltp1d |
⊢ ( 𝑀 ∈ ℕ → 𝑀 < ( 𝑀 + 1 ) ) |
53 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
54 |
1 52 53
|
3syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
55 |
50 11 29 5 16 54 9 27
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) 𝐴 = ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
56 |
49 55
|
eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) 𝐴 = ( Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 +𝑒 Σ* 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
57 |
40 43 56
|
3brtr4d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 1 ... 𝑀 ) 𝐴 ≤ Σ* 𝑘 ∈ ( 1 ... 𝑁 ) 𝐴 ) |