Step |
Hyp |
Ref |
Expression |
1 |
|
esumcocn.j |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
2 |
|
esumcocn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
esumcocn.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
esumcocn.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐽 Cn 𝐽 ) ) |
5 |
|
esumcocn.0 |
⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) = 0 ) |
6 |
|
esumcocn.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶 ‘ 𝑥 ) +𝑒 ( 𝐶 ‘ 𝑦 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
9 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
10 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
11 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
12 |
1 11
|
eqtr4i |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
13 |
10 12
|
tpsuni |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp → ( 0 [,] +∞ ) = ∪ 𝐽 ) |
14 |
9 13
|
ax-mp |
⊢ ( 0 [,] +∞ ) = ∪ 𝐽 |
15 |
14 14
|
cnf |
⊢ ( 𝐶 ∈ ( 𝐽 Cn 𝐽 ) → 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ) |
18 |
17 3
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
19 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
21 |
9
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
22 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
23 |
19 22
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
25 |
6
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶 ‘ 𝑥 ) +𝑒 ( 𝐶 ‘ 𝑦 ) ) ) ) |
26 |
25
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶 ‘ 𝑥 ) +𝑒 ( 𝐶 ‘ 𝑦 ) ) ) |
27 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
28 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
29 |
10 10 27 27 28 28
|
ismhm |
⊢ ( 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ↔ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶 ‘ 𝑥 ) +𝑒 ( 𝐶 ‘ 𝑦 ) ) ∧ ( 𝐶 ‘ 0 ) = 0 ) ) ) |
30 |
29
|
biimpri |
⊢ ( ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶 ‘ 𝑥 ) +𝑒 ( 𝐶 ‘ 𝑦 ) ) ∧ ( 𝐶 ‘ 0 ) = 0 ) ) → 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
31 |
24 24 16 26 5 30
|
syl23anc |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
32 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
33 |
32 3
|
fmpt3d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
34 |
7 8 2 3
|
esumel |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
35 |
10 12 12 20 21 20 21 31 4 2 33 34
|
tsmsmhm |
⊢ ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝐶 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
36 |
16 3
|
cofmpt |
⊢ ( 𝜑 → ( 𝐶 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 ‘ 𝐵 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝐶 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 ‘ 𝐵 ) ) ) ) |
38 |
35 37
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 ‘ 𝐵 ) ) ) ) |
39 |
7 8 2 18 38
|
esumid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 ( 𝐶 ‘ 𝐵 ) = ( 𝐶 ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) ) |
40 |
39
|
eqcomd |
⊢ ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐶 ‘ 𝐵 ) ) |