Metamath Proof Explorer


Theorem esumcocn

Description: Lemma for esummulc2 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumcocn.j 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
esumcocn.a ( 𝜑𝐴𝑉 )
esumcocn.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumcocn.1 ( 𝜑𝐶 ∈ ( 𝐽 Cn 𝐽 ) )
esumcocn.0 ( 𝜑 → ( 𝐶 ‘ 0 ) = 0 )
esumcocn.f ( ( 𝜑𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) )
Assertion esumcocn ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘𝐴 𝐵 ) = Σ* 𝑘𝐴 ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 esumcocn.j 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
2 esumcocn.a ( 𝜑𝐴𝑉 )
3 esumcocn.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 esumcocn.1 ( 𝜑𝐶 ∈ ( 𝐽 Cn 𝐽 ) )
5 esumcocn.0 ( 𝜑 → ( 𝐶 ‘ 0 ) = 0 )
6 esumcocn.f ( ( 𝜑𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) )
7 nfv 𝑘 𝜑
8 nfcv 𝑘 𝐴
9 xrge0tps ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp
10 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
11 xrge0topn ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
12 1 11 eqtr4i 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
13 10 12 tpsuni ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp → ( 0 [,] +∞ ) = 𝐽 )
14 9 13 ax-mp ( 0 [,] +∞ ) = 𝐽
15 14 14 cnf ( 𝐶 ∈ ( 𝐽 Cn 𝐽 ) → 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) )
16 4 15 syl ( 𝜑𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) )
17 16 adantr ( ( 𝜑𝑘𝐴 ) → 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) )
18 17 3 ffvelrnd ( ( 𝜑𝑘𝐴 ) → ( 𝐶𝐵 ) ∈ ( 0 [,] +∞ ) )
19 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
20 19 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
21 9 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp )
22 cmnmnd ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd )
23 19 22 ax-mp ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd
24 23 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd )
25 6 3expib ( 𝜑 → ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) ) )
26 25 ralrimivv ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) )
27 xrge0plusg +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
28 xrge00 0 = ( 0g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
29 10 10 27 27 28 28 ismhm ( 𝐶 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) ↔ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) ∧ ( 𝐶 ‘ 0 ) = 0 ) ) )
30 29 biimpri ( ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( 𝐶 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐶 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝐶𝑥 ) +𝑒 ( 𝐶𝑦 ) ) ∧ ( 𝐶 ‘ 0 ) = 0 ) ) → 𝐶 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) )
31 24 24 16 26 5 30 syl23anc ( 𝜑𝐶 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) MndHom ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) )
32 eqidd ( 𝜑 → ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 ) )
33 32 3 fmpt3d ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
34 7 8 2 3 esumel ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) )
35 10 12 12 20 21 20 21 31 4 2 33 34 tsmsmhm ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘𝐴 𝐵 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝐶 ∘ ( 𝑘𝐴𝐵 ) ) ) )
36 16 3 cofmpt ( 𝜑 → ( 𝐶 ∘ ( 𝑘𝐴𝐵 ) ) = ( 𝑘𝐴 ↦ ( 𝐶𝐵 ) ) )
37 36 oveq2d ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝐶 ∘ ( 𝑘𝐴𝐵 ) ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐶𝐵 ) ) ) )
38 35 37 eleqtrd ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘𝐴 𝐵 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐶𝐵 ) ) ) )
39 7 8 2 18 38 esumid ( 𝜑 → Σ* 𝑘𝐴 ( 𝐶𝐵 ) = ( 𝐶 ‘ Σ* 𝑘𝐴 𝐵 ) )
40 39 eqcomd ( 𝜑 → ( 𝐶 ‘ Σ* 𝑘𝐴 𝐵 ) = Σ* 𝑘𝐴 ( 𝐶𝐵 ) )