| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esummulc2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
esummulc2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
esummulc2.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 4 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 5 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) |
| 6 |
4 5 3
|
xrge0mulc1cn |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 9 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 10 |
9 3
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 11 |
|
xmul02 |
⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 0 ·e 𝐶 ) = 0 ) |
| 13 |
8 12
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑧 = 0 ) → ( 𝑧 ·e 𝐶 ) = 0 ) |
| 14 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] +∞ ) ) |
| 16 |
7 13 15 15
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 0 ) = 0 ) |
| 17 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 18 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → 𝑦 ∈ ( 0 [,] +∞ ) ) |
| 19 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 20 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 21 |
19 20
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 22 |
|
xrge0adddir |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 +𝑒 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 𝐶 ) +𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
| 23 |
17 18 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 +𝑒 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 𝐶 ) +𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
| 24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = ( 𝑥 +𝑒 𝑦 ) ) → 𝑧 = ( 𝑥 +𝑒 𝑦 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = ( 𝑥 +𝑒 𝑦 ) ) → ( 𝑧 ·e 𝐶 ) = ( ( 𝑥 +𝑒 𝑦 ) ·e 𝐶 ) ) |
| 27 |
|
ge0xaddcl |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 28 |
27
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 29 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 +𝑒 𝑦 ) ·e 𝐶 ) ∈ V ) |
| 30 |
24 26 28 29
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( 𝑥 +𝑒 𝑦 ) ·e 𝐶 ) ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = 𝑥 ) → 𝑧 = 𝑥 ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = 𝑥 ) → ( 𝑧 ·e 𝐶 ) = ( 𝑥 ·e 𝐶 ) ) |
| 33 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) ∈ V ) |
| 34 |
24 32 17 33
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑥 ) = ( 𝑥 ·e 𝐶 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = 𝑦 ) → 𝑧 = 𝑦 ) |
| 36 |
35
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑧 = 𝑦 ) → ( 𝑧 ·e 𝐶 ) = ( 𝑦 ·e 𝐶 ) ) |
| 37 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑦 ·e 𝐶 ) ∈ V ) |
| 38 |
24 36 18 37
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑦 ) = ( 𝑦 ·e 𝐶 ) ) |
| 39 |
34 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑥 ) +𝑒 ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ·e 𝐶 ) +𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
| 40 |
23 30 39
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑥 ) +𝑒 ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝑦 ) ) ) |
| 41 |
4 1 2 6 16 40
|
esumcocn |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) = Σ* 𝑘 ∈ 𝐴 ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝐵 ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 = Σ* 𝑘 ∈ 𝐴 𝐵 ) → 𝑧 = Σ* 𝑘 ∈ 𝐴 𝐵 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 = Σ* 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ·e 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e 𝐶 ) ) |
| 44 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 46 |
45
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 47 |
1 44 46
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 48 |
|
ovexd |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e 𝐶 ) ∈ V ) |
| 49 |
7 43 47 48
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ Σ* 𝑘 ∈ 𝐴 𝐵 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e 𝐶 ) ) |
| 50 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
| 52 |
51
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 = 𝐵 ) → ( 𝑧 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
| 53 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ V ) |
| 54 |
50 52 2 53
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 ·e 𝐶 ) ) |
| 55 |
54
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 ( ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ ( 𝑧 ·e 𝐶 ) ) ‘ 𝐵 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e 𝐶 ) ) |
| 56 |
41 49 55
|
3eqtr3d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e 𝐶 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e 𝐶 ) ) |