Metamath Proof Explorer


Theorem esummulc1

Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esummulc2.a φ A V
esummulc2.b φ k A B 0 +∞
esummulc2.c φ C 0 +∞
Assertion esummulc1 φ * k A B 𝑒 C = * k A B 𝑒 C

Proof

Step Hyp Ref Expression
1 esummulc2.a φ A V
2 esummulc2.b φ k A B 0 +∞
3 esummulc2.c φ C 0 +∞
4 eqid ordTop 𝑡 0 +∞ = ordTop 𝑡 0 +∞
5 eqid z 0 +∞ z 𝑒 C = z 0 +∞ z 𝑒 C
6 4 5 3 xrge0mulc1cn φ z 0 +∞ z 𝑒 C ordTop 𝑡 0 +∞ Cn ordTop 𝑡 0 +∞
7 eqidd φ z 0 +∞ z 𝑒 C = z 0 +∞ z 𝑒 C
8 oveq1 z = 0 z 𝑒 C = 0 𝑒 C
9 icossxr 0 +∞ *
10 9 3 sselid φ C *
11 xmul02 C * 0 𝑒 C = 0
12 10 11 syl φ 0 𝑒 C = 0
13 8 12 sylan9eqr φ z = 0 z 𝑒 C = 0
14 0e0iccpnf 0 0 +∞
15 14 a1i φ 0 0 +∞
16 7 13 15 15 fvmptd φ z 0 +∞ z 𝑒 C 0 = 0
17 simp2 φ x 0 +∞ y 0 +∞ x 0 +∞
18 simp3 φ x 0 +∞ y 0 +∞ y 0 +∞
19 icossicc 0 +∞ 0 +∞
20 3 3ad2ant1 φ x 0 +∞ y 0 +∞ C 0 +∞
21 19 20 sselid φ x 0 +∞ y 0 +∞ C 0 +∞
22 xrge0adddir x 0 +∞ y 0 +∞ C 0 +∞ x + 𝑒 y 𝑒 C = x 𝑒 C + 𝑒 y 𝑒 C
23 17 18 21 22 syl3anc φ x 0 +∞ y 0 +∞ x + 𝑒 y 𝑒 C = x 𝑒 C + 𝑒 y 𝑒 C
24 eqidd φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C = z 0 +∞ z 𝑒 C
25 simpr φ x 0 +∞ y 0 +∞ z = x + 𝑒 y z = x + 𝑒 y
26 25 oveq1d φ x 0 +∞ y 0 +∞ z = x + 𝑒 y z 𝑒 C = x + 𝑒 y 𝑒 C
27 ge0xaddcl x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
28 27 3adant1 φ x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
29 ovexd φ x 0 +∞ y 0 +∞ x + 𝑒 y 𝑒 C V
30 24 26 28 29 fvmptd φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C x + 𝑒 y = x + 𝑒 y 𝑒 C
31 simpr φ x 0 +∞ y 0 +∞ z = x z = x
32 31 oveq1d φ x 0 +∞ y 0 +∞ z = x z 𝑒 C = x 𝑒 C
33 ovexd φ x 0 +∞ y 0 +∞ x 𝑒 C V
34 24 32 17 33 fvmptd φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C x = x 𝑒 C
35 simpr φ x 0 +∞ y 0 +∞ z = y z = y
36 35 oveq1d φ x 0 +∞ y 0 +∞ z = y z 𝑒 C = y 𝑒 C
37 ovexd φ x 0 +∞ y 0 +∞ y 𝑒 C V
38 24 36 18 37 fvmptd φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C y = y 𝑒 C
39 34 38 oveq12d φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C x + 𝑒 z 0 +∞ z 𝑒 C y = x 𝑒 C + 𝑒 y 𝑒 C
40 23 30 39 3eqtr4d φ x 0 +∞ y 0 +∞ z 0 +∞ z 𝑒 C x + 𝑒 y = z 0 +∞ z 𝑒 C x + 𝑒 z 0 +∞ z 𝑒 C y
41 4 1 2 6 16 40 esumcocn φ z 0 +∞ z 𝑒 C * k A B = * k A z 0 +∞ z 𝑒 C B
42 simpr φ z = * k A B z = * k A B
43 42 oveq1d φ z = * k A B z 𝑒 C = * k A B 𝑒 C
44 2 ralrimiva φ k A B 0 +∞
45 nfcv _ k A
46 45 esumcl A V k A B 0 +∞ * k A B 0 +∞
47 1 44 46 syl2anc φ * k A B 0 +∞
48 ovexd φ * k A B 𝑒 C V
49 7 43 47 48 fvmptd φ z 0 +∞ z 𝑒 C * k A B = * k A B 𝑒 C
50 eqidd φ k A z 0 +∞ z 𝑒 C = z 0 +∞ z 𝑒 C
51 simpr φ k A z = B z = B
52 51 oveq1d φ k A z = B z 𝑒 C = B 𝑒 C
53 ovexd φ k A B 𝑒 C V
54 50 52 2 53 fvmptd φ k A z 0 +∞ z 𝑒 C B = B 𝑒 C
55 54 esumeq2dv φ * k A z 0 +∞ z 𝑒 C B = * k A B 𝑒 C
56 41 49 55 3eqtr3d φ * k A B 𝑒 C = * k A B 𝑒 C