Step |
Hyp |
Ref |
Expression |
1 |
|
esummulc2.a |
|
2 |
|
esummulc2.b |
|
3 |
|
esummulc2.c |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5 3
|
xrge0mulc1cn |
|
7 |
|
eqidd |
|
8 |
|
oveq1 |
|
9 |
|
icossxr |
|
10 |
9 3
|
sselid |
|
11 |
|
xmul02 |
|
12 |
10 11
|
syl |
|
13 |
8 12
|
sylan9eqr |
|
14 |
|
0e0iccpnf |
|
15 |
14
|
a1i |
|
16 |
7 13 15 15
|
fvmptd |
|
17 |
|
simp2 |
|
18 |
|
simp3 |
|
19 |
|
icossicc |
|
20 |
3
|
3ad2ant1 |
|
21 |
19 20
|
sselid |
|
22 |
|
xrge0adddir |
|
23 |
17 18 21 22
|
syl3anc |
|
24 |
|
eqidd |
|
25 |
|
simpr |
|
26 |
25
|
oveq1d |
|
27 |
|
ge0xaddcl |
|
28 |
27
|
3adant1 |
|
29 |
|
ovexd |
|
30 |
24 26 28 29
|
fvmptd |
|
31 |
|
simpr |
|
32 |
31
|
oveq1d |
|
33 |
|
ovexd |
|
34 |
24 32 17 33
|
fvmptd |
|
35 |
|
simpr |
|
36 |
35
|
oveq1d |
|
37 |
|
ovexd |
|
38 |
24 36 18 37
|
fvmptd |
|
39 |
34 38
|
oveq12d |
|
40 |
23 30 39
|
3eqtr4d |
|
41 |
4 1 2 6 16 40
|
esumcocn |
|
42 |
|
simpr |
|
43 |
42
|
oveq1d |
|
44 |
2
|
ralrimiva |
|
45 |
|
nfcv |
|
46 |
45
|
esumcl |
|
47 |
1 44 46
|
syl2anc |
|
48 |
|
ovexd |
|
49 |
7 43 47 48
|
fvmptd |
|
50 |
|
eqidd |
|
51 |
|
simpr |
|
52 |
51
|
oveq1d |
|
53 |
|
ovexd |
|
54 |
50 52 2 53
|
fvmptd |
|
55 |
54
|
esumeq2dv |
|
56 |
41 49 55
|
3eqtr3d |
|