| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esummulc2.a |
|
| 2 |
|
esummulc2.b |
|
| 3 |
|
esummulc2.c |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5 3
|
xrge0mulc1cn |
|
| 7 |
|
eqidd |
|
| 8 |
|
oveq1 |
|
| 9 |
|
icossxr |
|
| 10 |
9 3
|
sselid |
|
| 11 |
|
xmul02 |
|
| 12 |
10 11
|
syl |
|
| 13 |
8 12
|
sylan9eqr |
|
| 14 |
|
0e0iccpnf |
|
| 15 |
14
|
a1i |
|
| 16 |
7 13 15 15
|
fvmptd |
|
| 17 |
|
simp2 |
|
| 18 |
|
simp3 |
|
| 19 |
|
icossicc |
|
| 20 |
3
|
3ad2ant1 |
|
| 21 |
19 20
|
sselid |
|
| 22 |
|
xrge0adddir |
|
| 23 |
17 18 21 22
|
syl3anc |
|
| 24 |
|
eqidd |
|
| 25 |
|
simpr |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
ge0xaddcl |
|
| 28 |
27
|
3adant1 |
|
| 29 |
|
ovexd |
|
| 30 |
24 26 28 29
|
fvmptd |
|
| 31 |
|
simpr |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
ovexd |
|
| 34 |
24 32 17 33
|
fvmptd |
|
| 35 |
|
simpr |
|
| 36 |
35
|
oveq1d |
|
| 37 |
|
ovexd |
|
| 38 |
24 36 18 37
|
fvmptd |
|
| 39 |
34 38
|
oveq12d |
|
| 40 |
23 30 39
|
3eqtr4d |
|
| 41 |
4 1 2 6 16 40
|
esumcocn |
|
| 42 |
|
simpr |
|
| 43 |
42
|
oveq1d |
|
| 44 |
2
|
ralrimiva |
|
| 45 |
|
nfcv |
|
| 46 |
45
|
esumcl |
|
| 47 |
1 44 46
|
syl2anc |
|
| 48 |
|
ovexd |
|
| 49 |
7 43 47 48
|
fvmptd |
|
| 50 |
|
eqidd |
|
| 51 |
|
simpr |
|
| 52 |
51
|
oveq1d |
|
| 53 |
|
ovexd |
|
| 54 |
50 52 2 53
|
fvmptd |
|
| 55 |
54
|
esumeq2dv |
|
| 56 |
41 49 55
|
3eqtr3d |
|