Metamath Proof Explorer


Theorem esummulc2

Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esummulc2.a φAV
esummulc2.b φkAB0+∞
esummulc2.c φC0+∞
Assertion esummulc2 φC𝑒*kAB=*kAC𝑒B

Proof

Step Hyp Ref Expression
1 esummulc2.a φAV
2 esummulc2.b φkAB0+∞
3 esummulc2.c φC0+∞
4 icossxr 0+∞*
5 4 3 sselid φC*
6 iccssxr 0+∞*
7 2 ralrimiva φkAB0+∞
8 nfcv _kA
9 8 esumcl AVkAB0+∞*kAB0+∞
10 1 7 9 syl2anc φ*kAB0+∞
11 6 10 sselid φ*kAB*
12 xmulcom C**kAB*C𝑒*kAB=*kAB𝑒C
13 5 11 12 syl2anc φC𝑒*kAB=*kAB𝑒C
14 1 2 3 esummulc1 φ*kAB𝑒C=*kAB𝑒C
15 6 2 sselid φkAB*
16 5 adantr φkAC*
17 xmulcom B*C*B𝑒C=C𝑒B
18 15 16 17 syl2anc φkAB𝑒C=C𝑒B
19 18 esumeq2dv φ*kAB𝑒C=*kAC𝑒B
20 13 14 19 3eqtrd φC𝑒*kAB=*kAC𝑒B