Metamath Proof Explorer


Theorem esummulc2

Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esummulc2.a φ A V
esummulc2.b φ k A B 0 +∞
esummulc2.c φ C 0 +∞
Assertion esummulc2 φ C 𝑒 * k A B = * k A C 𝑒 B

Proof

Step Hyp Ref Expression
1 esummulc2.a φ A V
2 esummulc2.b φ k A B 0 +∞
3 esummulc2.c φ C 0 +∞
4 icossxr 0 +∞ *
5 4 3 sselid φ C *
6 iccssxr 0 +∞ *
7 2 ralrimiva φ k A B 0 +∞
8 nfcv _ k A
9 8 esumcl A V k A B 0 +∞ * k A B 0 +∞
10 1 7 9 syl2anc φ * k A B 0 +∞
11 6 10 sselid φ * k A B *
12 xmulcom C * * k A B * C 𝑒 * k A B = * k A B 𝑒 C
13 5 11 12 syl2anc φ C 𝑒 * k A B = * k A B 𝑒 C
14 1 2 3 esummulc1 φ * k A B 𝑒 C = * k A B 𝑒 C
15 6 2 sselid φ k A B *
16 5 adantr φ k A C *
17 xmulcom B * C * B 𝑒 C = C 𝑒 B
18 15 16 17 syl2anc φ k A B 𝑒 C = C 𝑒 B
19 18 esumeq2dv φ * k A B 𝑒 C = * k A C 𝑒 B
20 13 14 19 3eqtrd φ C 𝑒 * k A B = * k A C 𝑒 B