| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esummulc2.a |
|- ( ph -> A e. V ) |
| 2 |
|
esummulc2.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
esummulc2.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 4 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 5 |
4 3
|
sselid |
|- ( ph -> C e. RR* ) |
| 6 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 7 |
2
|
ralrimiva |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 8 |
|
nfcv |
|- F/_ k A |
| 9 |
8
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 10 |
1 7 9
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 11 |
6 10
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
| 12 |
|
xmulcom |
|- ( ( C e. RR* /\ sum* k e. A B e. RR* ) -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) ) |
| 13 |
5 11 12
|
syl2anc |
|- ( ph -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) ) |
| 14 |
1 2 3
|
esummulc1 |
|- ( ph -> ( sum* k e. A B *e C ) = sum* k e. A ( B *e C ) ) |
| 15 |
6 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR* ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ k e. A ) -> C e. RR* ) |
| 17 |
|
xmulcom |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
| 18 |
15 16 17
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( B *e C ) = ( C *e B ) ) |
| 19 |
18
|
esumeq2dv |
|- ( ph -> sum* k e. A ( B *e C ) = sum* k e. A ( C *e B ) ) |
| 20 |
13 14 19
|
3eqtrd |
|- ( ph -> ( C *e sum* k e. A B ) = sum* k e. A ( C *e B ) ) |