Step |
Hyp |
Ref |
Expression |
1 |
|
esummulc2.a |
|- ( ph -> A e. V ) |
2 |
|
esummulc2.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
3 |
|
esummulc2.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
4 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
5 |
4 3
|
sselid |
|- ( ph -> C e. RR* ) |
6 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
7 |
2
|
ralrimiva |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
8 |
|
nfcv |
|- F/_ k A |
9 |
8
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
10 |
1 7 9
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
11 |
6 10
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
12 |
|
xmulcom |
|- ( ( C e. RR* /\ sum* k e. A B e. RR* ) -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) ) |
13 |
5 11 12
|
syl2anc |
|- ( ph -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) ) |
14 |
1 2 3
|
esummulc1 |
|- ( ph -> ( sum* k e. A B *e C ) = sum* k e. A ( B *e C ) ) |
15 |
6 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR* ) |
16 |
5
|
adantr |
|- ( ( ph /\ k e. A ) -> C e. RR* ) |
17 |
|
xmulcom |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( B *e C ) = ( C *e B ) ) |
19 |
18
|
esumeq2dv |
|- ( ph -> sum* k e. A ( B *e C ) = sum* k e. A ( C *e B ) ) |
20 |
13 14 19
|
3eqtrd |
|- ( ph -> ( C *e sum* k e. A B ) = sum* k e. A ( C *e B ) ) |