Metamath Proof Explorer


Theorem esummulc2

Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esummulc2.a
|- ( ph -> A e. V )
esummulc2.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
esummulc2.c
|- ( ph -> C e. ( 0 [,) +oo ) )
Assertion esummulc2
|- ( ph -> ( C *e sum* k e. A B ) = sum* k e. A ( C *e B ) )

Proof

Step Hyp Ref Expression
1 esummulc2.a
 |-  ( ph -> A e. V )
2 esummulc2.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
3 esummulc2.c
 |-  ( ph -> C e. ( 0 [,) +oo ) )
4 icossxr
 |-  ( 0 [,) +oo ) C_ RR*
5 4 3 sselid
 |-  ( ph -> C e. RR* )
6 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
7 2 ralrimiva
 |-  ( ph -> A. k e. A B e. ( 0 [,] +oo ) )
8 nfcv
 |-  F/_ k A
9 8 esumcl
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) )
10 1 7 9 syl2anc
 |-  ( ph -> sum* k e. A B e. ( 0 [,] +oo ) )
11 6 10 sselid
 |-  ( ph -> sum* k e. A B e. RR* )
12 xmulcom
 |-  ( ( C e. RR* /\ sum* k e. A B e. RR* ) -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) )
13 5 11 12 syl2anc
 |-  ( ph -> ( C *e sum* k e. A B ) = ( sum* k e. A B *e C ) )
14 1 2 3 esummulc1
 |-  ( ph -> ( sum* k e. A B *e C ) = sum* k e. A ( B *e C ) )
15 6 2 sselid
 |-  ( ( ph /\ k e. A ) -> B e. RR* )
16 5 adantr
 |-  ( ( ph /\ k e. A ) -> C e. RR* )
17 xmulcom
 |-  ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) )
18 15 16 17 syl2anc
 |-  ( ( ph /\ k e. A ) -> ( B *e C ) = ( C *e B ) )
19 18 esumeq2dv
 |-  ( ph -> sum* k e. A ( B *e C ) = sum* k e. A ( C *e B ) )
20 13 14 19 3eqtrd
 |-  ( ph -> ( C *e sum* k e. A B ) = sum* k e. A ( C *e B ) )