| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esummulc2.a |
|- ( ph -> A e. V ) |
| 2 |
|
esummulc2.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
esummulc2.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 4 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 5 |
|
eqid |
|- ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) = ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) |
| 6 |
4 5 3
|
xrge0mulc1cn |
|- ( ph -> ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) = ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ) |
| 8 |
|
oveq1 |
|- ( z = 0 -> ( z *e C ) = ( 0 *e C ) ) |
| 9 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 10 |
9 3
|
sselid |
|- ( ph -> C e. RR* ) |
| 11 |
|
xmul02 |
|- ( C e. RR* -> ( 0 *e C ) = 0 ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( 0 *e C ) = 0 ) |
| 13 |
8 12
|
sylan9eqr |
|- ( ( ph /\ z = 0 ) -> ( z *e C ) = 0 ) |
| 14 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
| 15 |
14
|
a1i |
|- ( ph -> 0 e. ( 0 [,] +oo ) ) |
| 16 |
7 13 15 15
|
fvmptd |
|- ( ph -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` 0 ) = 0 ) |
| 17 |
|
simp2 |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) |
| 18 |
|
simp3 |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> y e. ( 0 [,] +oo ) ) |
| 19 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 20 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> C e. ( 0 [,) +oo ) ) |
| 21 |
19 20
|
sselid |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> C e. ( 0 [,] +oo ) ) |
| 22 |
|
xrge0adddir |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( ( x +e y ) *e C ) = ( ( x *e C ) +e ( y *e C ) ) ) |
| 23 |
17 18 21 22
|
syl3anc |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( x +e y ) *e C ) = ( ( x *e C ) +e ( y *e C ) ) ) |
| 24 |
|
eqidd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) = ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = ( x +e y ) ) -> z = ( x +e y ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = ( x +e y ) ) -> ( z *e C ) = ( ( x +e y ) *e C ) ) |
| 27 |
|
ge0xaddcl |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x +e y ) e. ( 0 [,] +oo ) ) |
| 28 |
27
|
3adant1 |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x +e y ) e. ( 0 [,] +oo ) ) |
| 29 |
|
ovexd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( x +e y ) *e C ) e. _V ) |
| 30 |
24 26 28 29
|
fvmptd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` ( x +e y ) ) = ( ( x +e y ) *e C ) ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = x ) -> z = x ) |
| 32 |
31
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = x ) -> ( z *e C ) = ( x *e C ) ) |
| 33 |
|
ovexd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x *e C ) e. _V ) |
| 34 |
24 32 17 33
|
fvmptd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` x ) = ( x *e C ) ) |
| 35 |
|
simpr |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = y ) -> z = y ) |
| 36 |
35
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) /\ z = y ) -> ( z *e C ) = ( y *e C ) ) |
| 37 |
|
ovexd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( y *e C ) e. _V ) |
| 38 |
24 36 18 37
|
fvmptd |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` y ) = ( y *e C ) ) |
| 39 |
34 38
|
oveq12d |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` x ) +e ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` y ) ) = ( ( x *e C ) +e ( y *e C ) ) ) |
| 40 |
23 30 39
|
3eqtr4d |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` ( x +e y ) ) = ( ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` x ) +e ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` y ) ) ) |
| 41 |
4 1 2 6 16 40
|
esumcocn |
|- ( ph -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` sum* k e. A B ) = sum* k e. A ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` B ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ z = sum* k e. A B ) -> z = sum* k e. A B ) |
| 43 |
42
|
oveq1d |
|- ( ( ph /\ z = sum* k e. A B ) -> ( z *e C ) = ( sum* k e. A B *e C ) ) |
| 44 |
2
|
ralrimiva |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 45 |
|
nfcv |
|- F/_ k A |
| 46 |
45
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 47 |
1 44 46
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 48 |
|
ovexd |
|- ( ph -> ( sum* k e. A B *e C ) e. _V ) |
| 49 |
7 43 47 48
|
fvmptd |
|- ( ph -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` sum* k e. A B ) = ( sum* k e. A B *e C ) ) |
| 50 |
|
eqidd |
|- ( ( ph /\ k e. A ) -> ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) = ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ) |
| 51 |
|
simpr |
|- ( ( ( ph /\ k e. A ) /\ z = B ) -> z = B ) |
| 52 |
51
|
oveq1d |
|- ( ( ( ph /\ k e. A ) /\ z = B ) -> ( z *e C ) = ( B *e C ) ) |
| 53 |
|
ovexd |
|- ( ( ph /\ k e. A ) -> ( B *e C ) e. _V ) |
| 54 |
50 52 2 53
|
fvmptd |
|- ( ( ph /\ k e. A ) -> ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` B ) = ( B *e C ) ) |
| 55 |
54
|
esumeq2dv |
|- ( ph -> sum* k e. A ( ( z e. ( 0 [,] +oo ) |-> ( z *e C ) ) ` B ) = sum* k e. A ( B *e C ) ) |
| 56 |
41 49 55
|
3eqtr3d |
|- ( ph -> ( sum* k e. A B *e C ) = sum* k e. A ( B *e C ) ) |