Step |
Hyp |
Ref |
Expression |
1 |
|
esumcocn.j |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
2 |
|
esumcocn.a |
|- ( ph -> A e. V ) |
3 |
|
esumcocn.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
esumcocn.1 |
|- ( ph -> C e. ( J Cn J ) ) |
5 |
|
esumcocn.0 |
|- ( ph -> ( C ` 0 ) = 0 ) |
6 |
|
esumcocn.f |
|- ( ( ph /\ x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( C ` ( x +e y ) ) = ( ( C ` x ) +e ( C ` y ) ) ) |
7 |
|
nfv |
|- F/ k ph |
8 |
|
nfcv |
|- F/_ k A |
9 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
10 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
11 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
12 |
1 11
|
eqtr4i |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
13 |
10 12
|
tpsuni |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp -> ( 0 [,] +oo ) = U. J ) |
14 |
9 13
|
ax-mp |
|- ( 0 [,] +oo ) = U. J |
15 |
14 14
|
cnf |
|- ( C e. ( J Cn J ) -> C : ( 0 [,] +oo ) --> ( 0 [,] +oo ) ) |
16 |
4 15
|
syl |
|- ( ph -> C : ( 0 [,] +oo ) --> ( 0 [,] +oo ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ k e. A ) -> C : ( 0 [,] +oo ) --> ( 0 [,] +oo ) ) |
18 |
17 3
|
ffvelrnd |
|- ( ( ph /\ k e. A ) -> ( C ` B ) e. ( 0 [,] +oo ) ) |
19 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
20 |
19
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
21 |
9
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
22 |
|
cmnmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
23 |
19 22
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
24 |
23
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
25 |
6
|
3expib |
|- ( ph -> ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( C ` ( x +e y ) ) = ( ( C ` x ) +e ( C ` y ) ) ) ) |
26 |
25
|
ralrimivv |
|- ( ph -> A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( C ` ( x +e y ) ) = ( ( C ` x ) +e ( C ` y ) ) ) |
27 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
28 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
29 |
10 10 27 27 28 28
|
ismhm |
|- ( C e. ( ( RR*s |`s ( 0 [,] +oo ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) <-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) /\ ( C : ( 0 [,] +oo ) --> ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( C ` ( x +e y ) ) = ( ( C ` x ) +e ( C ` y ) ) /\ ( C ` 0 ) = 0 ) ) ) |
30 |
29
|
biimpri |
|- ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) /\ ( C : ( 0 [,] +oo ) --> ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( C ` ( x +e y ) ) = ( ( C ` x ) +e ( C ` y ) ) /\ ( C ` 0 ) = 0 ) ) -> C e. ( ( RR*s |`s ( 0 [,] +oo ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
31 |
24 24 16 26 5 30
|
syl23anc |
|- ( ph -> C e. ( ( RR*s |`s ( 0 [,] +oo ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
32 |
|
eqidd |
|- ( ph -> ( k e. A |-> B ) = ( k e. A |-> B ) ) |
33 |
32 3
|
fmpt3d |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
34 |
7 8 2 3
|
esumel |
|- ( ph -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
35 |
10 12 12 20 21 20 21 31 4 2 33 34
|
tsmsmhm |
|- ( ph -> ( C ` sum* k e. A B ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( C o. ( k e. A |-> B ) ) ) ) |
36 |
16 3
|
cofmpt |
|- ( ph -> ( C o. ( k e. A |-> B ) ) = ( k e. A |-> ( C ` B ) ) ) |
37 |
36
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( C o. ( k e. A |-> B ) ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> ( C ` B ) ) ) ) |
38 |
35 37
|
eleqtrd |
|- ( ph -> ( C ` sum* k e. A B ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> ( C ` B ) ) ) ) |
39 |
7 8 2 18 38
|
esumid |
|- ( ph -> sum* k e. A ( C ` B ) = ( C ` sum* k e. A B ) ) |
40 |
39
|
eqcomd |
|- ( ph -> ( C ` sum* k e. A B ) = sum* k e. A ( C ` B ) ) |