Metamath Proof Explorer


Theorem esumcocn

Description: Lemma for esummulc2 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumcocn.j J = ordTop 𝑡 0 +∞
esumcocn.a φ A V
esumcocn.b φ k A B 0 +∞
esumcocn.1 φ C J Cn J
esumcocn.0 φ C 0 = 0
esumcocn.f φ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y
Assertion esumcocn φ C * k A B = * k A C B

Proof

Step Hyp Ref Expression
1 esumcocn.j J = ordTop 𝑡 0 +∞
2 esumcocn.a φ A V
3 esumcocn.b φ k A B 0 +∞
4 esumcocn.1 φ C J Cn J
5 esumcocn.0 φ C 0 = 0
6 esumcocn.f φ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y
7 nfv k φ
8 nfcv _ k A
9 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
10 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
11 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
12 1 11 eqtr4i J = TopOpen 𝑠 * 𝑠 0 +∞
13 10 12 tpsuni 𝑠 * 𝑠 0 +∞ TopSp 0 +∞ = J
14 9 13 ax-mp 0 +∞ = J
15 14 14 cnf C J Cn J C : 0 +∞ 0 +∞
16 4 15 syl φ C : 0 +∞ 0 +∞
17 16 adantr φ k A C : 0 +∞ 0 +∞
18 17 3 ffvelrnd φ k A C B 0 +∞
19 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
20 19 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
21 9 a1i φ 𝑠 * 𝑠 0 +∞ TopSp
22 cmnmnd 𝑠 * 𝑠 0 +∞ CMnd 𝑠 * 𝑠 0 +∞ Mnd
23 19 22 ax-mp 𝑠 * 𝑠 0 +∞ Mnd
24 23 a1i φ 𝑠 * 𝑠 0 +∞ Mnd
25 6 3expib φ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y
26 25 ralrimivv φ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y
27 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
28 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
29 10 10 27 27 28 28 ismhm C 𝑠 * 𝑠 0 +∞ MndHom 𝑠 * 𝑠 0 +∞ 𝑠 * 𝑠 0 +∞ Mnd 𝑠 * 𝑠 0 +∞ Mnd C : 0 +∞ 0 +∞ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y C 0 = 0
30 29 biimpri 𝑠 * 𝑠 0 +∞ Mnd 𝑠 * 𝑠 0 +∞ Mnd C : 0 +∞ 0 +∞ x 0 +∞ y 0 +∞ C x + 𝑒 y = C x + 𝑒 C y C 0 = 0 C 𝑠 * 𝑠 0 +∞ MndHom 𝑠 * 𝑠 0 +∞
31 24 24 16 26 5 30 syl23anc φ C 𝑠 * 𝑠 0 +∞ MndHom 𝑠 * 𝑠 0 +∞
32 eqidd φ k A B = k A B
33 32 3 fmpt3d φ k A B : A 0 +∞
34 7 8 2 3 esumel φ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B
35 10 12 12 20 21 20 21 31 4 2 33 34 tsmsmhm φ C * k A B 𝑠 * 𝑠 0 +∞ tsums C k A B
36 16 3 cofmpt φ C k A B = k A C B
37 36 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums C k A B = 𝑠 * 𝑠 0 +∞ tsums k A C B
38 35 37 eleqtrd φ C * k A B 𝑠 * 𝑠 0 +∞ tsums k A C B
39 7 8 2 18 38 esumid φ * k A C B = C * k A B
40 39 eqcomd φ C * k A B = * k A C B