| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpmono.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
esumpmono.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 3 |
|
esumpmono.3 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 4 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 5 |
|
ovexd |
|- ( ph -> ( 1 ... M ) e. _V ) |
| 6 |
|
elfznn |
|- ( k e. ( 1 ... M ) -> k e. NN ) |
| 7 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 8 |
7 3
|
sselid |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 9 |
6 8
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> A e. ( 0 [,] +oo ) ) |
| 10 |
9
|
ralrimiva |
|- ( ph -> A. k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
| 11 |
|
nfcv |
|- F/_ k ( 1 ... M ) |
| 12 |
11
|
esumcl |
|- ( ( ( 1 ... M ) e. _V /\ A. k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
| 13 |
5 10 12
|
syl2anc |
|- ( ph -> sum* k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
| 14 |
4 13
|
sselid |
|- ( ph -> sum* k e. ( 1 ... M ) A e. RR* ) |
| 15 |
14
|
xrleidd |
|- ( ph -> sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A ) |
| 16 |
|
ovexd |
|- ( ph -> ( ( M + 1 ) ... N ) e. _V ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> M e. NN ) |
| 18 |
|
peano2nn |
|- ( M e. NN -> ( M + 1 ) e. NN ) |
| 19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 20 |
18 19
|
eleqtrdi |
|- ( M e. NN -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
| 21 |
|
fzss1 |
|- ( ( M + 1 ) e. ( ZZ>= ` 1 ) -> ( ( M + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 22 |
17 20 21
|
3syl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> ( ( M + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 23 |
|
simpr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( ( M + 1 ) ... N ) ) |
| 24 |
22 23
|
sseldd |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( 1 ... N ) ) |
| 25 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. NN ) |
| 27 |
26 8
|
syldan |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> A e. ( 0 [,] +oo ) ) |
| 28 |
27
|
ralrimiva |
|- ( ph -> A. k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
| 29 |
|
nfcv |
|- F/_ k ( ( M + 1 ) ... N ) |
| 30 |
29
|
esumcl |
|- ( ( ( ( M + 1 ) ... N ) e. _V /\ A. k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
| 31 |
16 28 30
|
syl2anc |
|- ( ph -> sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
| 32 |
|
elxrge0 |
|- ( sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) <-> ( sum* k e. ( ( M + 1 ) ... N ) A e. RR* /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) ) |
| 33 |
32
|
simprbi |
|- ( sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) -> 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) |
| 34 |
31 33
|
syl |
|- ( ph -> 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) |
| 35 |
|
0xr |
|- 0 e. RR* |
| 36 |
35
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 37 |
4 31
|
sselid |
|- ( ph -> sum* k e. ( ( M + 1 ) ... N ) A e. RR* ) |
| 38 |
|
xle2add |
|- ( ( ( sum* k e. ( 1 ... M ) A e. RR* /\ 0 e. RR* ) /\ ( sum* k e. ( 1 ... M ) A e. RR* /\ sum* k e. ( ( M + 1 ) ... N ) A e. RR* ) ) -> ( ( sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) ) |
| 39 |
14 36 14 37 38
|
syl22anc |
|- ( ph -> ( ( sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) ) |
| 40 |
15 34 39
|
mp2and |
|- ( ph -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
| 41 |
|
xaddrid |
|- ( sum* k e. ( 1 ... M ) A e. RR* -> ( sum* k e. ( 1 ... M ) A +e 0 ) = sum* k e. ( 1 ... M ) A ) |
| 42 |
14 41
|
syl |
|- ( ph -> ( sum* k e. ( 1 ... M ) A +e 0 ) = sum* k e. ( 1 ... M ) A ) |
| 43 |
42
|
eqcomd |
|- ( ph -> sum* k e. ( 1 ... M ) A = ( sum* k e. ( 1 ... M ) A +e 0 ) ) |
| 44 |
1 19
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 45 |
|
eluzfz |
|- ( ( M e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` M ) ) -> M e. ( 1 ... N ) ) |
| 46 |
44 2 45
|
syl2anc |
|- ( ph -> M e. ( 1 ... N ) ) |
| 47 |
|
fzsplit |
|- ( M e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 48 |
|
esumeq1 |
|- ( ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) -> sum* k e. ( 1 ... N ) A = sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A ) |
| 49 |
46 47 48
|
3syl |
|- ( ph -> sum* k e. ( 1 ... N ) A = sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A ) |
| 50 |
|
nfv |
|- F/ k ph |
| 51 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 52 |
51
|
ltp1d |
|- ( M e. NN -> M < ( M + 1 ) ) |
| 53 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 54 |
1 52 53
|
3syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 55 |
50 11 29 5 16 54 9 27
|
esumsplit |
|- ( ph -> sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A = ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
| 56 |
49 55
|
eqtrd |
|- ( ph -> sum* k e. ( 1 ... N ) A = ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
| 57 |
40 43 56
|
3brtr4d |
|- ( ph -> sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... N ) A ) |