Step |
Hyp |
Ref |
Expression |
1 |
|
esumpmono.1 |
|- ( ph -> M e. NN ) |
2 |
|
esumpmono.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
3 |
|
esumpmono.3 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
4 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
5 |
|
ovexd |
|- ( ph -> ( 1 ... M ) e. _V ) |
6 |
|
elfznn |
|- ( k e. ( 1 ... M ) -> k e. NN ) |
7 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
8 |
7 3
|
sselid |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
9 |
6 8
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> A e. ( 0 [,] +oo ) ) |
10 |
9
|
ralrimiva |
|- ( ph -> A. k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
11 |
|
nfcv |
|- F/_ k ( 1 ... M ) |
12 |
11
|
esumcl |
|- ( ( ( 1 ... M ) e. _V /\ A. k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
13 |
5 10 12
|
syl2anc |
|- ( ph -> sum* k e. ( 1 ... M ) A e. ( 0 [,] +oo ) ) |
14 |
4 13
|
sselid |
|- ( ph -> sum* k e. ( 1 ... M ) A e. RR* ) |
15 |
14
|
xrleidd |
|- ( ph -> sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A ) |
16 |
|
ovexd |
|- ( ph -> ( ( M + 1 ) ... N ) e. _V ) |
17 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> M e. NN ) |
18 |
|
peano2nn |
|- ( M e. NN -> ( M + 1 ) e. NN ) |
19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
20 |
18 19
|
eleqtrdi |
|- ( M e. NN -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
21 |
|
fzss1 |
|- ( ( M + 1 ) e. ( ZZ>= ` 1 ) -> ( ( M + 1 ) ... N ) C_ ( 1 ... N ) ) |
22 |
17 20 21
|
3syl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> ( ( M + 1 ) ... N ) C_ ( 1 ... N ) ) |
23 |
|
simpr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( ( M + 1 ) ... N ) ) |
24 |
22 23
|
sseldd |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( 1 ... N ) ) |
25 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
26 |
24 25
|
syl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. NN ) |
27 |
26 8
|
syldan |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> A e. ( 0 [,] +oo ) ) |
28 |
27
|
ralrimiva |
|- ( ph -> A. k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
29 |
|
nfcv |
|- F/_ k ( ( M + 1 ) ... N ) |
30 |
29
|
esumcl |
|- ( ( ( ( M + 1 ) ... N ) e. _V /\ A. k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
31 |
16 28 30
|
syl2anc |
|- ( ph -> sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) ) |
32 |
|
elxrge0 |
|- ( sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) <-> ( sum* k e. ( ( M + 1 ) ... N ) A e. RR* /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) ) |
33 |
32
|
simprbi |
|- ( sum* k e. ( ( M + 1 ) ... N ) A e. ( 0 [,] +oo ) -> 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) |
34 |
31 33
|
syl |
|- ( ph -> 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) |
35 |
|
0xr |
|- 0 e. RR* |
36 |
35
|
a1i |
|- ( ph -> 0 e. RR* ) |
37 |
4 31
|
sselid |
|- ( ph -> sum* k e. ( ( M + 1 ) ... N ) A e. RR* ) |
38 |
|
xle2add |
|- ( ( ( sum* k e. ( 1 ... M ) A e. RR* /\ 0 e. RR* ) /\ ( sum* k e. ( 1 ... M ) A e. RR* /\ sum* k e. ( ( M + 1 ) ... N ) A e. RR* ) ) -> ( ( sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) ) |
39 |
14 36 14 37 38
|
syl22anc |
|- ( ph -> ( ( sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... M ) A /\ 0 <_ sum* k e. ( ( M + 1 ) ... N ) A ) -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) ) |
40 |
15 34 39
|
mp2and |
|- ( ph -> ( sum* k e. ( 1 ... M ) A +e 0 ) <_ ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
41 |
|
xaddid1 |
|- ( sum* k e. ( 1 ... M ) A e. RR* -> ( sum* k e. ( 1 ... M ) A +e 0 ) = sum* k e. ( 1 ... M ) A ) |
42 |
14 41
|
syl |
|- ( ph -> ( sum* k e. ( 1 ... M ) A +e 0 ) = sum* k e. ( 1 ... M ) A ) |
43 |
42
|
eqcomd |
|- ( ph -> sum* k e. ( 1 ... M ) A = ( sum* k e. ( 1 ... M ) A +e 0 ) ) |
44 |
1 19
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
45 |
|
eluzfz |
|- ( ( M e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` M ) ) -> M e. ( 1 ... N ) ) |
46 |
44 2 45
|
syl2anc |
|- ( ph -> M e. ( 1 ... N ) ) |
47 |
|
fzsplit |
|- ( M e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) |
48 |
|
esumeq1 |
|- ( ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) -> sum* k e. ( 1 ... N ) A = sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A ) |
49 |
46 47 48
|
3syl |
|- ( ph -> sum* k e. ( 1 ... N ) A = sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A ) |
50 |
|
nfv |
|- F/ k ph |
51 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
52 |
51
|
ltp1d |
|- ( M e. NN -> M < ( M + 1 ) ) |
53 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
54 |
1 52 53
|
3syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
55 |
50 11 29 5 16 54 9 27
|
esumsplit |
|- ( ph -> sum* k e. ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) A = ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
56 |
49 55
|
eqtrd |
|- ( ph -> sum* k e. ( 1 ... N ) A = ( sum* k e. ( 1 ... M ) A +e sum* k e. ( ( M + 1 ) ... N ) A ) ) |
57 |
40 43 56
|
3brtr4d |
|- ( ph -> sum* k e. ( 1 ... M ) A <_ sum* k e. ( 1 ... N ) A ) |