Metamath Proof Explorer


Theorem esumpmono

Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017)

Ref Expression
Hypotheses esumpmono.1 φ M
esumpmono.2 φ N M
esumpmono.3 φ k A 0 +∞
Assertion esumpmono φ * k = 1 M A * k = 1 N A

Proof

Step Hyp Ref Expression
1 esumpmono.1 φ M
2 esumpmono.2 φ N M
3 esumpmono.3 φ k A 0 +∞
4 iccssxr 0 +∞ *
5 ovexd φ 1 M V
6 elfznn k 1 M k
7 icossicc 0 +∞ 0 +∞
8 7 3 sselid φ k A 0 +∞
9 6 8 sylan2 φ k 1 M A 0 +∞
10 9 ralrimiva φ k 1 M A 0 +∞
11 nfcv _ k 1 M
12 11 esumcl 1 M V k 1 M A 0 +∞ * k = 1 M A 0 +∞
13 5 10 12 syl2anc φ * k = 1 M A 0 +∞
14 4 13 sselid φ * k = 1 M A *
15 14 xrleidd φ * k = 1 M A * k = 1 M A
16 ovexd φ M + 1 N V
17 1 adantr φ k M + 1 N M
18 peano2nn M M + 1
19 nnuz = 1
20 18 19 eleqtrdi M M + 1 1
21 fzss1 M + 1 1 M + 1 N 1 N
22 17 20 21 3syl φ k M + 1 N M + 1 N 1 N
23 simpr φ k M + 1 N k M + 1 N
24 22 23 sseldd φ k M + 1 N k 1 N
25 elfznn k 1 N k
26 24 25 syl φ k M + 1 N k
27 26 8 syldan φ k M + 1 N A 0 +∞
28 27 ralrimiva φ k M + 1 N A 0 +∞
29 nfcv _ k M + 1 N
30 29 esumcl M + 1 N V k M + 1 N A 0 +∞ * k = M + 1 N A 0 +∞
31 16 28 30 syl2anc φ * k = M + 1 N A 0 +∞
32 elxrge0 * k = M + 1 N A 0 +∞ * k = M + 1 N A * 0 * k = M + 1 N A
33 32 simprbi * k = M + 1 N A 0 +∞ 0 * k = M + 1 N A
34 31 33 syl φ 0 * k = M + 1 N A
35 0xr 0 *
36 35 a1i φ 0 *
37 4 31 sselid φ * k = M + 1 N A *
38 xle2add * k = 1 M A * 0 * * k = 1 M A * * k = M + 1 N A * * k = 1 M A * k = 1 M A 0 * k = M + 1 N A * k = 1 M A + 𝑒 0 * k = 1 M A + 𝑒 * k = M + 1 N A
39 14 36 14 37 38 syl22anc φ * k = 1 M A * k = 1 M A 0 * k = M + 1 N A * k = 1 M A + 𝑒 0 * k = 1 M A + 𝑒 * k = M + 1 N A
40 15 34 39 mp2and φ * k = 1 M A + 𝑒 0 * k = 1 M A + 𝑒 * k = M + 1 N A
41 xaddid1 * k = 1 M A * * k = 1 M A + 𝑒 0 = * k = 1 M A
42 14 41 syl φ * k = 1 M A + 𝑒 0 = * k = 1 M A
43 42 eqcomd φ * k = 1 M A = * k = 1 M A + 𝑒 0
44 1 19 eleqtrdi φ M 1
45 eluzfz M 1 N M M 1 N
46 44 2 45 syl2anc φ M 1 N
47 fzsplit M 1 N 1 N = 1 M M + 1 N
48 esumeq1 1 N = 1 M M + 1 N * k = 1 N A = * k 1 M M + 1 N A
49 46 47 48 3syl φ * k = 1 N A = * k 1 M M + 1 N A
50 nfv k φ
51 nnre M M
52 51 ltp1d M M < M + 1
53 fzdisj M < M + 1 1 M M + 1 N =
54 1 52 53 3syl φ 1 M M + 1 N =
55 50 11 29 5 16 54 9 27 esumsplit φ * k 1 M M + 1 N A = * k = 1 M A + 𝑒 * k = M + 1 N A
56 49 55 eqtrd φ * k = 1 N A = * k = 1 M A + 𝑒 * k = M + 1 N A
57 40 43 56 3brtr4d φ * k = 1 M A * k = 1 N A