Step |
Hyp |
Ref |
Expression |
1 |
|
esumpmono.1 |
|
2 |
|
esumpmono.2 |
|
3 |
|
esumpmono.3 |
|
4 |
|
iccssxr |
|
5 |
|
ovexd |
|
6 |
|
elfznn |
|
7 |
|
icossicc |
|
8 |
7 3
|
sselid |
|
9 |
6 8
|
sylan2 |
|
10 |
9
|
ralrimiva |
|
11 |
|
nfcv |
|
12 |
11
|
esumcl |
|
13 |
5 10 12
|
syl2anc |
|
14 |
4 13
|
sselid |
|
15 |
14
|
xrleidd |
|
16 |
|
ovexd |
|
17 |
1
|
adantr |
|
18 |
|
peano2nn |
|
19 |
|
nnuz |
|
20 |
18 19
|
eleqtrdi |
|
21 |
|
fzss1 |
|
22 |
17 20 21
|
3syl |
|
23 |
|
simpr |
|
24 |
22 23
|
sseldd |
|
25 |
|
elfznn |
|
26 |
24 25
|
syl |
|
27 |
26 8
|
syldan |
|
28 |
27
|
ralrimiva |
|
29 |
|
nfcv |
|
30 |
29
|
esumcl |
|
31 |
16 28 30
|
syl2anc |
|
32 |
|
elxrge0 |
|
33 |
32
|
simprbi |
|
34 |
31 33
|
syl |
|
35 |
|
0xr |
|
36 |
35
|
a1i |
|
37 |
4 31
|
sselid |
|
38 |
|
xle2add |
|
39 |
14 36 14 37 38
|
syl22anc |
|
40 |
15 34 39
|
mp2and |
|
41 |
|
xaddid1 |
|
42 |
14 41
|
syl |
|
43 |
42
|
eqcomd |
|
44 |
1 19
|
eleqtrdi |
|
45 |
|
eluzfz |
|
46 |
44 2 45
|
syl2anc |
|
47 |
|
fzsplit |
|
48 |
|
esumeq1 |
|
49 |
46 47 48
|
3syl |
|
50 |
|
nfv |
|
51 |
|
nnre |
|
52 |
51
|
ltp1d |
|
53 |
|
fzdisj |
|
54 |
1 52 53
|
3syl |
|
55 |
50 11 29 5 16 54 9 27
|
esumsplit |
|
56 |
49 55
|
eqtrd |
|
57 |
40 43 56
|
3brtr4d |
|