Step |
Hyp |
Ref |
Expression |
1 |
|
esumpcvgval.1 |
|
2 |
|
esumpcvgval.2 |
|
3 |
|
esumpcvgval.3 |
|
4 |
|
xrltso |
|
5 |
4
|
a1i |
|
6 |
|
nnuz |
|
7 |
|
1zzd |
|
8 |
|
eqcom |
|
9 |
|
eqcom |
|
10 |
2 8 9
|
3imtr3i |
|
11 |
10
|
cbvmptv |
|
12 |
1 11
|
fmptd |
|
13 |
12
|
ffvelrnda |
|
14 |
|
elrege0 |
|
15 |
14
|
simplbi |
|
16 |
13 15
|
syl |
|
17 |
6 7 16
|
serfre |
|
18 |
12
|
adantr |
|
19 |
|
simpr |
|
20 |
19
|
peano2nnd |
|
21 |
18 20
|
ffvelrnd |
|
22 |
|
elrege0 |
|
23 |
22
|
simprbi |
|
24 |
21 23
|
syl |
|
25 |
17
|
ffvelrnda |
|
26 |
22
|
simplbi |
|
27 |
21 26
|
syl |
|
28 |
25 27
|
addge01d |
|
29 |
24 28
|
mpbid |
|
30 |
19 6
|
eleqtrdi |
|
31 |
|
seqp1 |
|
32 |
30 31
|
syl |
|
33 |
29 32
|
breqtrrd |
|
34 |
|
simpr |
|
35 |
11
|
fvmpt2 |
|
36 |
34 1 35
|
syl2anc |
|
37 |
|
rge0ssre |
|
38 |
37 1
|
sselid |
|
39 |
17
|
feqmptd |
|
40 |
|
simpll |
|
41 |
|
elfznn |
|
42 |
41
|
adantl |
|
43 |
40 42 36
|
syl2anc |
|
44 |
38
|
recnd |
|
45 |
40 42 44
|
syl2anc |
|
46 |
43 30 45
|
fsumser |
|
47 |
46
|
eqcomd |
|
48 |
47
|
mpteq2dva |
|
49 |
39 48
|
eqtr2d |
|
50 |
49 3
|
eqeltrrd |
|
51 |
6 7 36 38 50
|
isumrecl |
|
52 |
|
1zzd |
|
53 |
|
fzfid |
|
54 |
|
fzssuz |
|
55 |
54 6
|
sseqtrri |
|
56 |
55
|
a1i |
|
57 |
36
|
adantlr |
|
58 |
38
|
adantlr |
|
59 |
1
|
adantlr |
|
60 |
|
elrege0 |
|
61 |
60
|
simprbi |
|
62 |
59 61
|
syl |
|
63 |
50
|
adantr |
|
64 |
6 52 53 56 57 58 62 63
|
isumless |
|
65 |
46 64
|
eqbrtrrd |
|
66 |
65
|
ralrimiva |
|
67 |
|
brralrspcev |
|
68 |
51 66 67
|
syl2anc |
|
69 |
6 7 17 33 68
|
climsup |
|
70 |
6 7 69 25
|
climrecl |
|
71 |
70
|
rexrd |
|
72 |
|
eqid |
|
73 |
|
sumex |
|
74 |
72 73
|
elrnmpti |
|
75 |
|
ssnnssfz |
|
76 |
|
fzfid |
|
77 |
|
elfznn |
|
78 |
77 1
|
sylan2 |
|
79 |
60
|
simplbi |
|
80 |
78 79
|
syl |
|
81 |
80
|
adantlr |
|
82 |
78 61
|
syl |
|
83 |
82
|
adantlr |
|
84 |
|
simpr |
|
85 |
76 81 83 84
|
fsumless |
|
86 |
85
|
ex |
|
87 |
86
|
reximdv |
|
88 |
87
|
imp |
|
89 |
75 88
|
sylan2 |
|
90 |
|
breq1 |
|
91 |
90
|
rexbidv |
|
92 |
89 91
|
syl5ibrcom |
|
93 |
92
|
rexlimdva |
|
94 |
93
|
imp |
|
95 |
74 94
|
sylan2b |
|
96 |
|
simpr |
|
97 |
|
inss2 |
|
98 |
|
simpr |
|
99 |
97 98
|
sselid |
|
100 |
|
simpll |
|
101 |
|
inss1 |
|
102 |
|
simplr |
|
103 |
101 102
|
sselid |
|
104 |
103
|
elpwid |
|
105 |
|
simpr |
|
106 |
104 105
|
sseldd |
|
107 |
100 106 1
|
syl2anc |
|
108 |
107 79
|
syl |
|
109 |
99 108
|
fsumrecl |
|
110 |
109
|
adantr |
|
111 |
96 110
|
eqeltrd |
|
112 |
111
|
r19.29an |
|
113 |
74 112
|
sylan2b |
|
114 |
113
|
adantr |
|
115 |
|
fzfid |
|
116 |
115 80
|
fsumrecl |
|
117 |
116
|
ad2antrr |
|
118 |
70
|
ad2antrr |
|
119 |
|
simprr |
|
120 |
17
|
frnd |
|
121 |
120
|
ad2antrr |
|
122 |
|
1nn |
|
123 |
122
|
ne0ii |
|
124 |
|
dm0rn0 |
|
125 |
17
|
fdmd |
|
126 |
125
|
eqeq1d |
|
127 |
124 126
|
bitr3id |
|
128 |
127
|
necon3bid |
|
129 |
123 128
|
mpbiri |
|
130 |
129
|
ad2antrr |
|
131 |
|
1z |
|
132 |
|
seqfn |
|
133 |
131 132
|
ax-mp |
|
134 |
6
|
fneq2i |
|
135 |
133 134
|
mpbir |
|
136 |
|
dffn5 |
|
137 |
135 136
|
mpbi |
|
138 |
|
fvex |
|
139 |
137 138
|
elrnmpti |
|
140 |
|
r19.29 |
|
141 |
|
breq1 |
|
142 |
141
|
biimparc |
|
143 |
142
|
rexlimivw |
|
144 |
140 143
|
syl |
|
145 |
139 144
|
sylan2b |
|
146 |
145
|
ralrimiva |
|
147 |
146
|
reximi |
|
148 |
68 147
|
syl |
|
149 |
148
|
ad2antrr |
|
150 |
|
simpr |
|
151 |
|
simpll |
|
152 |
77
|
adantl |
|
153 |
151 152 36
|
syl2anc |
|
154 |
150 6
|
eleqtrdi |
|
155 |
151 152 1
|
syl2anc |
|
156 |
155 79
|
syl |
|
157 |
156
|
recnd |
|
158 |
153 154 157
|
fsumser |
|
159 |
|
fveq2 |
|
160 |
159
|
rspceeqv |
|
161 |
150 158 160
|
syl2anc |
|
162 |
137 138
|
elrnmpti |
|
163 |
161 162
|
sylibr |
|
164 |
163
|
ad2ant2r |
|
165 |
|
suprub |
|
166 |
121 130 149 164 165
|
syl31anc |
|
167 |
114 117 118 119 166
|
letrd |
|
168 |
95 167
|
rexlimddv |
|
169 |
70
|
adantr |
|
170 |
113 169
|
lenltd |
|
171 |
168 170
|
mpbid |
|
172 |
|
simpr1r |
|
173 |
172
|
3anassrs |
|
174 |
71
|
ad3antrrr |
|
175 |
|
pnfnlt |
|
176 |
174 175
|
syl |
|
177 |
|
breq1 |
|
178 |
177
|
notbid |
|
179 |
178
|
adantl |
|
180 |
176 179
|
mpbird |
|
181 |
173 180
|
pm2.21dd |
|
182 |
|
simplll |
|
183 |
|
simpr1l |
|
184 |
183
|
3anassrs |
|
185 |
|
simplr |
|
186 |
|
simpr |
|
187 |
|
0xr |
|
188 |
|
pnfxr |
|
189 |
|
elico1 |
|
190 |
187 188 189
|
mp2an |
|
191 |
184 185 186 190
|
syl3anbrc |
|
192 |
|
simpr1r |
|
193 |
192
|
3anassrs |
|
194 |
120
|
adantr |
|
195 |
129
|
adantr |
|
196 |
148
|
adantr |
|
197 |
194 195 196
|
3jca |
|
198 |
|
simprl |
|
199 |
37 198
|
sselid |
|
200 |
|
simprr |
|
201 |
|
suprlub |
|
202 |
201
|
biimpa |
|
203 |
197 199 200 202
|
syl21anc |
|
204 |
41
|
ssriv |
|
205 |
|
ovex |
|
206 |
205
|
elpw |
|
207 |
204 206
|
mpbir |
|
208 |
|
fzfi |
|
209 |
|
elin |
|
210 |
207 208 209
|
mpbir2an |
|
211 |
210
|
a1i |
|
212 |
|
simpr |
|
213 |
46
|
adantr |
|
214 |
212 213
|
eqtr4d |
|
215 |
|
sumeq1 |
|
216 |
215
|
rspceeqv |
|
217 |
211 214 216
|
syl2anc |
|
218 |
217
|
ex |
|
219 |
218
|
rexlimdva |
|
220 |
137 138
|
elrnmpti |
|
221 |
72 73
|
elrnmpti |
|
222 |
219 220 221
|
3imtr4g |
|
223 |
222
|
ssrdv |
|
224 |
|
ssrexv |
|
225 |
223 224
|
syl |
|
226 |
225
|
imp |
|
227 |
203 226
|
syldan |
|
228 |
182 191 193 227
|
syl12anc |
|
229 |
|
simplrl |
|
230 |
|
xrlelttric |
|
231 |
188 230
|
mpan |
|
232 |
|
xgepnf |
|
233 |
232
|
orbi1d |
|
234 |
231 233
|
mpbid |
|
235 |
229 234
|
syl |
|
236 |
181 228 235
|
mpjaodan |
|
237 |
|
0elpw |
|
238 |
|
0fin |
|
239 |
|
elin |
|
240 |
237 238 239
|
mpbir2an |
|
241 |
|
sum0 |
|
242 |
241
|
eqcomi |
|
243 |
|
sumeq1 |
|
244 |
243
|
rspceeqv |
|
245 |
240 242 244
|
mp2an |
|
246 |
72 73
|
elrnmpti |
|
247 |
245 246
|
mpbir |
|
248 |
|
breq2 |
|
249 |
248
|
rspcev |
|
250 |
247 249
|
mpan |
|
251 |
250
|
adantl |
|
252 |
|
xrlelttric |
|
253 |
187 252
|
mpan |
|
254 |
253
|
ad2antrl |
|
255 |
236 251 254
|
mpjaodan |
|
256 |
5 71 171 255
|
eqsupd |
|
257 |
|
nfv |
|
258 |
|
nfcv |
|
259 |
|
nnex |
|
260 |
259
|
a1i |
|
261 |
|
icossicc |
|
262 |
261 1
|
sselid |
|
263 |
|
elex |
|
264 |
263
|
adantl |
|
265 |
107
|
fmpttd |
|
266 |
|
esumpfinvallem |
|
267 |
264 265 266
|
syl2anc |
|
268 |
108
|
recnd |
|
269 |
99 268
|
gsumfsum |
|
270 |
267 269
|
eqtr3d |
|
271 |
257 258 260 262 270
|
esumval |
|
272 |
6 7 36 44 69
|
isumclim |
|
273 |
256 271 272
|
3eqtr4d |
|