Metamath Proof Explorer


Theorem isumless

Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumless.1 Z=M
isumless.2 φM
isumless.3 φAFin
isumless.4 φAZ
isumless.5 φkZFk=B
isumless.6 φkZB
isumless.7 φkZ0B
isumless.8 φseqM+Fdom
Assertion isumless φkABkZB

Proof

Step Hyp Ref Expression
1 isumless.1 Z=M
2 isumless.2 φM
3 isumless.3 φAFin
4 isumless.4 φAZ
5 isumless.5 φkZFk=B
6 isumless.6 φkZB
7 isumless.7 φkZ0B
8 isumless.8 φseqM+Fdom
9 4 sselda φkAkZ
10 6 recnd φkZB
11 9 10 syldan φkAB
12 11 ralrimiva φkAB
13 1 eqimssi ZM
14 13 orci ZMZFin
15 14 a1i φZMZFin
16 sumss2 AZkABZMZFinkAB=kZifkAB0
17 4 12 15 16 syl21anc φkAB=kZifkAB0
18 eleq1w j=kjAkA
19 fveq2 j=kFj=Fk
20 18 19 ifbieq1d j=kifjAFj0=ifkAFk0
21 eqid jZifjAFj0=jZifjAFj0
22 fvex FkV
23 c0ex 0V
24 22 23 ifex ifkAFk0V
25 20 21 24 fvmpt kZjZifjAFj0k=ifkAFk0
26 25 adantl φkZjZifjAFj0k=ifkAFk0
27 5 ifeq1d φkZifkAFk0=ifkAB0
28 26 27 eqtrd φkZjZifjAFj0k=ifkAB0
29 0re 0
30 ifcl B0ifkAB0
31 6 29 30 sylancl φkZifkAB0
32 leid BBB
33 breq1 B=ifkAB0BBifkAB0B
34 breq1 0=ifkAB00BifkAB0B
35 33 34 ifboth BB0BifkAB0B
36 32 35 sylan B0BifkAB0B
37 6 7 36 syl2anc φkZifkAB0B
38 1 2 3 4 28 11 fsumcvg3 φseqM+jZifjAFj0dom
39 1 2 28 31 5 6 37 38 8 isumle φkZifkAB0kZB
40 17 39 eqbrtrd φkABkZB