Metamath Proof Explorer


Theorem isumle

Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumle.1 Z=M
isumle.2 φM
isumle.3 φkZFk=A
isumle.4 φkZA
isumle.5 φkZGk=B
isumle.6 φkZB
isumle.7 φkZAB
isumle.8 φseqM+Fdom
isumle.9 φseqM+Gdom
Assertion isumle φkZAkZB

Proof

Step Hyp Ref Expression
1 isumle.1 Z=M
2 isumle.2 φM
3 isumle.3 φkZFk=A
4 isumle.4 φkZA
5 isumle.5 φkZGk=B
6 isumle.6 φkZB
7 isumle.7 φkZAB
8 isumle.8 φseqM+Fdom
9 isumle.9 φseqM+Gdom
10 climdm seqM+FdomseqM+FseqM+F
11 8 10 sylib φseqM+FseqM+F
12 climdm seqM+GdomseqM+GseqM+G
13 9 12 sylib φseqM+GseqM+G
14 3 4 eqeltrd φkZFk
15 5 6 eqeltrd φkZGk
16 7 3 5 3brtr4d φkZFkGk
17 1 2 11 13 14 15 16 iserle φseqM+FseqM+G
18 4 recnd φkZA
19 1 2 3 18 isum φkZA=seqM+F
20 6 recnd φkZB
21 1 2 5 20 isum φkZB=seqM+G
22 17 19 21 3brtr4d φkZAkZB