Metamath Proof Explorer


Theorem isumle

Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumle.1 𝑍 = ( ℤ𝑀 )
isumle.2 ( 𝜑𝑀 ∈ ℤ )
isumle.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumle.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
isumle.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = 𝐵 )
isumle.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
isumle.7 ( ( 𝜑𝑘𝑍 ) → 𝐴𝐵 )
isumle.8 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
isumle.9 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ )
Assertion isumle ( 𝜑 → Σ 𝑘𝑍 𝐴 ≤ Σ 𝑘𝑍 𝐵 )

Proof

Step Hyp Ref Expression
1 isumle.1 𝑍 = ( ℤ𝑀 )
2 isumle.2 ( 𝜑𝑀 ∈ ℤ )
3 isumle.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumle.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
5 isumle.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = 𝐵 )
6 isumle.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
7 isumle.7 ( ( 𝜑𝑘𝑍 ) → 𝐴𝐵 )
8 isumle.8 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
9 isumle.9 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ )
10 climdm ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
11 8 10 sylib ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
12 climdm ( seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) )
13 9 12 sylib ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) )
14 3 4 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
15 5 6 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
16 7 3 5 3brtr4d ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ≤ ( 𝐺𝑘 ) )
17 1 2 11 13 14 15 16 iserle ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ≤ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) )
18 4 recnd ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
19 1 2 3 18 isum ( 𝜑 → Σ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
20 6 recnd ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
21 1 2 5 20 isum ( 𝜑 → Σ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) )
22 17 19 21 3brtr4d ( 𝜑 → Σ 𝑘𝑍 𝐴 ≤ Σ 𝑘𝑍 𝐵 )