Metamath Proof Explorer


Theorem iserle

Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
iserle.2 φM
iserle.4 φseqM+FA
iserle.5 φseqM+GB
iserle.6 φkZFk
iserle.7 φkZGk
iserle.8 φkZFkGk
Assertion iserle φAB

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 iserle.2 φM
3 iserle.4 φseqM+FA
4 iserle.5 φseqM+GB
5 iserle.6 φkZFk
6 iserle.7 φkZGk
7 iserle.8 φkZFkGk
8 1 2 5 serfre φseqM+F:Z
9 8 ffvelcdmda φjZseqM+Fj
10 1 2 6 serfre φseqM+G:Z
11 10 ffvelcdmda φjZseqM+Gj
12 simpr φjZjZ
13 12 1 eleqtrdi φjZjM
14 simpll φjZkMjφ
15 elfzuz kMjkM
16 15 1 eleqtrrdi kMjkZ
17 16 adantl φjZkMjkZ
18 14 17 5 syl2anc φjZkMjFk
19 14 17 6 syl2anc φjZkMjGk
20 14 17 7 syl2anc φjZkMjFkGk
21 13 18 19 20 serle φjZseqM+FjseqM+Gj
22 1 2 3 4 9 11 21 climle φAB