Metamath Proof Explorer


Theorem isumsup2

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1 Z=M
isumsup.2 G=seqM+F
isumsup.3 φM
isumsup.4 φkZFk=A
isumsup.5 φkZA
isumsup.6 φkZ0A
isumsup.7 φxjZGjx
Assertion isumsup2 φGsupranG<

Proof

Step Hyp Ref Expression
1 isumsup.1 Z=M
2 isumsup.2 G=seqM+F
3 isumsup.3 φM
4 isumsup.4 φkZFk=A
5 isumsup.5 φkZA
6 isumsup.6 φkZ0A
7 isumsup.7 φxjZGjx
8 4 5 eqeltrd φkZFk
9 1 3 8 serfre φseqM+F:Z
10 2 feq1i G:ZseqM+F:Z
11 9 10 sylibr φG:Z
12 simpr φjZjZ
13 12 1 eleqtrdi φjZjM
14 eluzelz jMj
15 uzid jjj
16 peano2uz jjj+1j
17 13 14 15 16 4syl φjZj+1j
18 simpl φjZφ
19 elfzuz kMj+1kM
20 19 1 eleqtrrdi kMj+1kZ
21 18 20 8 syl2an φjZkMj+1Fk
22 1 peano2uzs jZj+1Z
23 22 adantl φjZj+1Z
24 elfzuz kj+1j+1kj+1
25 1 uztrn2 j+1Zkj+1kZ
26 23 24 25 syl2an φjZkj+1j+1kZ
27 6 4 breqtrrd φkZ0Fk
28 27 adantlr φjZkZ0Fk
29 26 28 syldan φjZkj+1j+10Fk
30 13 17 21 29 sermono φjZseqM+FjseqM+Fj+1
31 2 fveq1i Gj=seqM+Fj
32 2 fveq1i Gj+1=seqM+Fj+1
33 30 31 32 3brtr4g φjZGjGj+1
34 1 3 11 33 7 climsup φGsupranG<