Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumsup.1 | |
|
isumsup.2 | |
||
isumsup.3 | |
||
isumsup.4 | |
||
isumsup.5 | |
||
isumsup.6 | |
||
isumsup.7 | |
||
Assertion | isumsup2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | |
|
2 | isumsup.2 | |
|
3 | isumsup.3 | |
|
4 | isumsup.4 | |
|
5 | isumsup.5 | |
|
6 | isumsup.6 | |
|
7 | isumsup.7 | |
|
8 | 4 5 | eqeltrd | |
9 | 1 3 8 | serfre | |
10 | 2 | feq1i | |
11 | 9 10 | sylibr | |
12 | simpr | |
|
13 | 12 1 | eleqtrdi | |
14 | eluzelz | |
|
15 | uzid | |
|
16 | peano2uz | |
|
17 | 13 14 15 16 | 4syl | |
18 | simpl | |
|
19 | elfzuz | |
|
20 | 19 1 | eleqtrrdi | |
21 | 18 20 8 | syl2an | |
22 | 1 | peano2uzs | |
23 | 22 | adantl | |
24 | elfzuz | |
|
25 | 1 | uztrn2 | |
26 | 23 24 25 | syl2an | |
27 | 6 4 | breqtrrd | |
28 | 27 | adantlr | |
29 | 26 28 | syldan | |
30 | 13 17 21 29 | sermono | |
31 | 2 | fveq1i | |
32 | 2 | fveq1i | |
33 | 30 31 32 | 3brtr4g | |
34 | 1 3 11 33 7 | climsup | |