Metamath Proof Explorer


Theorem isumsup

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1 Z=M
isumsup.2 G=seqM+F
isumsup.3 φM
isumsup.4 φkZFk=A
isumsup.5 φkZA
isumsup.6 φkZ0A
isumsup.7 φxjZGjx
Assertion isumsup φkZA=supranG<

Proof

Step Hyp Ref Expression
1 isumsup.1 Z=M
2 isumsup.2 G=seqM+F
3 isumsup.3 φM
4 isumsup.4 φkZFk=A
5 isumsup.5 φkZA
6 isumsup.6 φkZ0A
7 isumsup.7 φxjZGjx
8 5 recnd φkZA
9 1 2 3 4 5 6 7 isumsup2 φGsupranG<
10 2 9 eqbrtrrid φseqM+FsupranG<
11 1 3 4 8 10 isumclim φkZA=supranG<