| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumsup.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumsup.2 |
⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) |
| 3 |
|
isumsup.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
isumsup.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 5 |
|
isumsup.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 6 |
|
isumsup.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) |
| 7 |
|
isumsup.7 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
| 8 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 9 |
1 2 3 4 5 6 7
|
isumsup2 |
⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
| 10 |
2 9
|
eqbrtrrid |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
| 11 |
1 3 4 8 10
|
isumclim |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = sup ( ran 𝐺 , ℝ , < ) ) |