Step |
Hyp |
Ref |
Expression |
1 |
|
isumsup.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumsup.2 |
⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) |
3 |
|
isumsup.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
isumsup.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
isumsup.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
6 |
|
isumsup.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) |
7 |
|
isumsup.7 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
8 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
9 |
1 3 8
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
10 |
2
|
feq1i |
⊢ ( 𝐺 : 𝑍 ⟶ ℝ ↔ seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
11 |
9 10
|
sylibr |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
13 |
12 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
14 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
15 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
16 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
17 |
13 14 15 16
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
18 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝜑 ) |
19 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
20 |
19 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
21 |
18 20 8
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
22 |
1
|
peano2uzs |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
24 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
25 |
1
|
uztrn2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
27 |
6 4
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
29 |
26 28
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
30 |
13 17 21 29
|
sermono |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
31 |
2
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) |
32 |
2
|
fveq1i |
⊢ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) |
33 |
30 31 32
|
3brtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
34 |
1 3 11 33 7
|
climsup |
⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |