Description: Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | peano2uzs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
Assertion | peano2uzs | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2uzs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
3 | 2 1 | eleqtrrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ 𝑍 ) |
4 | 3 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |