Metamath Proof Explorer


Theorem peano2uzs

Description: Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis peano2uzs.1 𝑍 = ( ℤ𝑀 )
Assertion peano2uzs ( 𝑁𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 )

Proof

Step Hyp Ref Expression
1 peano2uzs.1 𝑍 = ( ℤ𝑀 )
2 peano2uz ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
3 2 1 eleqtrrdi ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ 𝑍 )
4 3 1 eleq2s ( 𝑁𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 )