Metamath Proof Explorer


Theorem ssnnssfz

Description: For any finite subset of NN , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017)

Ref Expression
Assertion ssnnssfz A𝒫FinnA1n

Proof

Step Hyp Ref Expression
1 1nn 1
2 simpr A𝒫FinA=A=
3 0ss 11
4 2 3 eqsstrdi A𝒫FinA=A11
5 oveq2 n=11n=11
6 5 sseq2d n=1A1nA11
7 6 rspcev 1A11nA1n
8 1 4 7 sylancr A𝒫FinA=nA1n
9 elin A𝒫FinA𝒫AFin
10 9 simplbi A𝒫FinA𝒫
11 10 adantr A𝒫FinAA𝒫
12 11 elpwid A𝒫FinAA
13 nnssre
14 ltso <Or
15 soss <Or<Or
16 13 14 15 mp2 <Or
17 16 a1i A𝒫FinA<Or
18 9 simprbi A𝒫FinAFin
19 18 adantr A𝒫FinAAFin
20 simpr A𝒫FinAA
21 fisupcl <OrAFinAAsupA<A
22 17 19 20 12 21 syl13anc A𝒫FinAsupA<A
23 12 22 sseldd A𝒫FinAsupA<
24 12 sselda A𝒫FinAxAx
25 nnuz =1
26 24 25 eleqtrdi A𝒫FinAxAx1
27 24 nnzd A𝒫FinAxAx
28 12 adantr A𝒫FinAxAA
29 22 adantr A𝒫FinAxAsupA<A
30 28 29 sseldd A𝒫FinAxAsupA<
31 30 nnzd A𝒫FinAxAsupA<
32 fisup2g <OrAFinAAxAyA¬x<yyy<xzAy<z
33 17 19 20 12 32 syl13anc A𝒫FinAxAyA¬x<yyy<xzAy<z
34 ssrexv AxAyA¬x<yyy<xzAy<zxyA¬x<yyy<xzAy<z
35 12 33 34 sylc A𝒫FinAxyA¬x<yyy<xzAy<z
36 17 35 supub A𝒫FinAxA¬supA<<x
37 36 imp A𝒫FinAxA¬supA<<x
38 24 nnred A𝒫FinAxAx
39 30 nnred A𝒫FinAxAsupA<
40 38 39 lenltd A𝒫FinAxAxsupA<¬supA<<x
41 37 40 mpbird A𝒫FinAxAxsupA<
42 eluz2 supA<xxsupA<xsupA<
43 27 31 41 42 syl3anbrc A𝒫FinAxAsupA<x
44 eluzfz x1supA<xx1supA<
45 26 43 44 syl2anc A𝒫FinAxAx1supA<
46 45 ex A𝒫FinAxAx1supA<
47 46 ssrdv A𝒫FinAA1supA<
48 oveq2 n=supA<1n=1supA<
49 48 sseq2d n=supA<A1nA1supA<
50 49 rspcev supA<A1supA<nA1n
51 23 47 50 syl2anc A𝒫FinAnA1n
52 8 51 pm2.61dane A𝒫FinnA1n