Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
|- ( ( F : A --> ( 0 [,) +oo ) /\ A e. V ) -> F e. _V ) |
2 |
1
|
ancoms |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> F e. _V ) |
3 |
|
ovexd |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. _V ) |
4 |
|
ovexd |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( RR*s |`s ( 0 [,) +oo ) ) e. _V ) |
5 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
6 |
|
ax-resscn |
|- RR C_ CC |
7 |
5 6
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
8 |
|
eqid |
|- ( CCfld |`s ( 0 [,) +oo ) ) = ( CCfld |`s ( 0 [,) +oo ) ) |
9 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
10 |
8 9
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ CC -> ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
11 |
7 10
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
12 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
13 |
|
eqid |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
14 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
15 |
13 14
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ RR* -> ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
16 |
12 15
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
17 |
11 16
|
eqtr3i |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
18 |
17
|
a1i |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
19 |
|
simprl |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
20 |
19 11
|
eleqtrrdi |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> x e. ( 0 [,) +oo ) ) |
21 |
|
simprr |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
22 |
21 11
|
eleqtrrdi |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> y e. ( 0 [,) +oo ) ) |
23 |
|
ge0addcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
24 |
|
ovex |
|- ( 0 [,) +oo ) e. _V |
25 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
26 |
8 25
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
27 |
24 26
|
ax-mp |
|- + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
28 |
27
|
oveqi |
|- ( x + y ) = ( x ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) y ) |
29 |
23 28 11
|
3eltr3g |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
30 |
20 22 29
|
syl2anc |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( x ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
31 |
|
simpl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) +oo ) ) |
32 |
5 31
|
sselid |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> x e. RR ) |
33 |
|
simpr |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) ) |
34 |
5 33
|
sselid |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> y e. RR ) |
35 |
|
rexadd |
|- ( ( x e. RR /\ y e. RR ) -> ( x +e y ) = ( x + y ) ) |
36 |
35
|
eqcomd |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) = ( x +e y ) ) |
37 |
32 34 36
|
syl2anc |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) = ( x +e y ) ) |
38 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
39 |
13 38
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
40 |
24 39
|
ax-mp |
|- +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
41 |
40
|
oveqi |
|- ( x +e y ) = ( x ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) y ) |
42 |
37 28 41
|
3eqtr3g |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) y ) = ( x ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) y ) ) |
43 |
20 22 42
|
syl2anc |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ ( x e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ y e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( x ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) y ) = ( x ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) y ) ) |
44 |
|
simpr |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> F : A --> ( 0 [,) +oo ) ) |
45 |
44
|
ffund |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> Fun F ) |
46 |
44
|
frnd |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ran F C_ ( 0 [,) +oo ) ) |
47 |
46 11
|
sseqtrdi |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ran F C_ ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
48 |
2 3 4 18 30 43 45 47
|
gsumpropd2 |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( ( CCfld |`s ( 0 [,) +oo ) ) gsum F ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum F ) ) |
49 |
|
cnfldex |
|- CCfld e. _V |
50 |
49
|
a1i |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> CCfld e. _V ) |
51 |
|
simpl |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> A e. V ) |
52 |
7
|
a1i |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( 0 [,) +oo ) C_ CC ) |
53 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
54 |
53
|
a1i |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> 0 e. ( 0 [,) +oo ) ) |
55 |
|
simpr |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. CC ) -> x e. CC ) |
56 |
55
|
addid2d |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. CC ) -> ( 0 + x ) = x ) |
57 |
55
|
addid1d |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. CC ) -> ( x + 0 ) = x ) |
58 |
56 57
|
jca |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. CC ) -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
59 |
9 25 8 50 51 52 44 54 58
|
gsumress |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( CCfld gsum F ) = ( ( CCfld |`s ( 0 [,) +oo ) ) gsum F ) ) |
60 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
61 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
62 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
63 |
|
ressress |
|- ( ( ( 0 [,] +oo ) e. _V /\ ( 0 [,) +oo ) e. _V ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( ( 0 [,] +oo ) i^i ( 0 [,) +oo ) ) ) ) |
64 |
62 24 63
|
mp2an |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( ( 0 [,] +oo ) i^i ( 0 [,) +oo ) ) ) |
65 |
|
incom |
|- ( ( 0 [,] +oo ) i^i ( 0 [,) +oo ) ) = ( ( 0 [,) +oo ) i^i ( 0 [,] +oo ) ) |
66 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
67 |
|
dfss |
|- ( ( 0 [,) +oo ) C_ ( 0 [,] +oo ) <-> ( 0 [,) +oo ) = ( ( 0 [,) +oo ) i^i ( 0 [,] +oo ) ) ) |
68 |
66 67
|
mpbi |
|- ( 0 [,) +oo ) = ( ( 0 [,) +oo ) i^i ( 0 [,] +oo ) ) |
69 |
65 68
|
eqtr4i |
|- ( ( 0 [,] +oo ) i^i ( 0 [,) +oo ) ) = ( 0 [,) +oo ) |
70 |
69
|
oveq2i |
|- ( RR*s |`s ( ( 0 [,] +oo ) i^i ( 0 [,) +oo ) ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
71 |
64 70
|
eqtr2i |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) |
72 |
|
ovexd |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. _V ) |
73 |
66
|
a1i |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
74 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
75 |
|
simpr |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) |
76 |
74 75
|
sselid |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> x e. RR* ) |
77 |
|
xaddid2 |
|- ( x e. RR* -> ( 0 +e x ) = x ) |
78 |
76 77
|
syl |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( 0 +e x ) = x ) |
79 |
|
xaddid1 |
|- ( x e. RR* -> ( x +e 0 ) = x ) |
80 |
76 79
|
syl |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( x +e 0 ) = x ) |
81 |
78 80
|
jca |
|- ( ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
82 |
60 61 71 72 51 73 44 54 81
|
gsumress |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum F ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum F ) ) |
83 |
48 59 82
|
3eqtr4d |
|- ( ( A e. V /\ F : A --> ( 0 [,) +oo ) ) -> ( CCfld gsum F ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum F ) ) |