Step |
Hyp |
Ref |
Expression |
1 |
|
esumpfinval.a |
|- ( ph -> A e. Fin ) |
2 |
|
esumpfinval.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
3 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
4 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
5 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
6 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
7 |
6
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
8 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
9 |
8
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
10 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
11 |
10 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
12 |
11
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
13 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
14 |
|
c0ex |
|- 0 e. _V |
15 |
14
|
a1i |
|- ( ph -> 0 e. _V ) |
16 |
13 1 2 15
|
fsuppmptdm |
|- ( ph -> ( k e. A |-> B ) finSupp 0 ) |
17 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
18 |
17
|
eqcomi |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
19 |
|
xrhaus |
|- ( ordTop ` <_ ) e. Haus |
20 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
21 |
|
resthaus |
|- ( ( ( ordTop ` <_ ) e. Haus /\ ( 0 [,] +oo ) e. _V ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus ) |
22 |
19 20 21
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus |
23 |
22
|
a1i |
|- ( ph -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus ) |
24 |
4 5 7 9 1 12 16 18 23
|
haustsmsid |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = { ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) } ) |
25 |
24
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = U. { ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) } ) |
26 |
3 25
|
eqtrid |
|- ( ph -> sum* k e. A B = U. { ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) } ) |
27 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. _V |
28 |
27
|
unisn |
|- U. { ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) } = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) |
29 |
26 28
|
eqtrdi |
|- ( ph -> sum* k e. A B = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
30 |
2
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,) +oo ) ) |
31 |
|
esumpfinvallem |
|- ( ( A e. Fin /\ ( k e. A |-> B ) : A --> ( 0 [,) +oo ) ) -> ( CCfld gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
32 |
1 30 31
|
syl2anc |
|- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
33 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
34 |
|
ax-resscn |
|- RR C_ CC |
35 |
33 34
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
36 |
35 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
37 |
1 36
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
38 |
29 32 37
|
3eqtr2d |
|- ( ph -> sum* k e. A B = sum_ k e. A B ) |