Metamath Proof Explorer


Theorem esumpfinval

Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses esumpfinval.a ( 𝜑𝐴 ∈ Fin )
esumpfinval.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion esumpfinval ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 esumpfinval.a ( 𝜑𝐴 ∈ Fin )
2 esumpfinval.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
3 df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
4 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
5 xrge00 0 = ( 0g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
6 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
7 6 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
8 xrge0tps ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp
9 8 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp )
10 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
11 10 2 sseldi ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
12 11 fmpttd ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
13 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
14 c0ex 0 ∈ V
15 14 a1i ( 𝜑 → 0 ∈ V )
16 13 1 2 15 fsuppmptdm ( 𝜑 → ( 𝑘𝐴𝐵 ) finSupp 0 )
17 xrge0topn ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
18 17 eqcomi ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
19 xrhaus ( ordTop ‘ ≤ ) ∈ Haus
20 ovex ( 0 [,] +∞ ) ∈ V
21 resthaus ( ( ( ordTop ‘ ≤ ) ∈ Haus ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus )
22 19 20 21 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus
23 22 a1i ( 𝜑 → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus )
24 4 5 7 9 1 12 16 18 23 haustsmsid ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
25 24 unieqd ( 𝜑 ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
26 3 25 syl5eq ( 𝜑 → Σ* 𝑘𝐴 𝐵 = { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } )
27 ovex ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) ∈ V
28 27 unisn { ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) } = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) )
29 26 28 eqtrdi ( 𝜑 → Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
30 2 fmpttd ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
31 esumpfinvallem ( ( 𝐴 ∈ Fin ∧ ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
32 1 30 31 syl2anc ( 𝜑 → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )
33 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
34 ax-resscn ℝ ⊆ ℂ
35 33 34 sstri ( 0 [,) +∞ ) ⊆ ℂ
36 35 2 sseldi ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
37 1 36 gsumfsum ( 𝜑 → ( ℂfld Σg ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )
38 29 32 37 3eqtr2d ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐵 )