| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climsup.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climsup.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climsup.3 |
|- ( ph -> F : Z --> RR ) |
| 4 |
|
climsup.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 5 |
|
climsup.5 |
|- ( ph -> E. x e. RR A. k e. Z ( F ` k ) <_ x ) |
| 6 |
3
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 7 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
| 8 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 9 |
2 8
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 10 |
9 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
| 11 |
|
fnfvelrn |
|- ( ( F Fn Z /\ M e. Z ) -> ( F ` M ) e. ran F ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ph -> ( F ` M ) e. ran F ) |
| 13 |
12
|
ne0d |
|- ( ph -> ran F =/= (/) ) |
| 14 |
|
breq1 |
|- ( y = ( F ` k ) -> ( y <_ x <-> ( F ` k ) <_ x ) ) |
| 15 |
14
|
ralrn |
|- ( F Fn Z -> ( A. y e. ran F y <_ x <-> A. k e. Z ( F ` k ) <_ x ) ) |
| 16 |
15
|
rexbidv |
|- ( F Fn Z -> ( E. x e. RR A. y e. ran F y <_ x <-> E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
| 17 |
7 16
|
syl |
|- ( ph -> ( E. x e. RR A. y e. ran F y <_ x <-> E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
| 18 |
5 17
|
mpbird |
|- ( ph -> E. x e. RR A. y e. ran F y <_ x ) |
| 19 |
6 13 18
|
3jca |
|- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 20 |
|
suprcl |
|- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) -> sup ( ran F , RR , < ) e. RR ) |
| 21 |
19 20
|
syl |
|- ( ph -> sup ( ran F , RR , < ) e. RR ) |
| 22 |
|
ltsubrp |
|- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) ) |
| 23 |
21 22
|
sylan |
|- ( ( ph /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) ) |
| 24 |
19
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 25 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 26 |
|
resubcl |
|- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR ) -> ( sup ( ran F , RR , < ) - y ) e. RR ) |
| 27 |
21 25 26
|
syl2an |
|- ( ( ph /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) e. RR ) |
| 28 |
|
suprlub |
|- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) /\ ( sup ( ran F , RR , < ) - y ) e. RR ) -> ( ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) <-> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) ) |
| 29 |
24 27 28
|
syl2anc |
|- ( ( ph /\ y e. RR+ ) -> ( ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) <-> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) ) |
| 30 |
23 29
|
mpbid |
|- ( ( ph /\ y e. RR+ ) -> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) |
| 31 |
|
breq2 |
|- ( k = ( F ` j ) -> ( ( sup ( ran F , RR , < ) - y ) < k <-> ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
| 32 |
31
|
rexrn |
|- ( F Fn Z -> ( E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k <-> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
| 33 |
7 32
|
syl |
|- ( ph -> ( E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k <-> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
| 34 |
33
|
biimpa |
|- ( ( ph /\ E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) -> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) |
| 35 |
30 34
|
syldan |
|- ( ( ph /\ y e. RR+ ) -> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) |
| 36 |
|
ffvelcdm |
|- ( ( F : Z --> RR /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 37 |
3 36
|
sylan |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 38 |
37
|
ad2ant2r |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. RR ) |
| 39 |
3
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> F : Z --> RR ) |
| 40 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 41 |
|
ffvelcdm |
|- ( ( F : Z --> RR /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 42 |
39 40 41
|
syl2an |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
| 43 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> sup ( ran F , RR , < ) e. RR ) |
| 44 |
|
simprr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
| 45 |
|
fzssuz |
|- ( j ... k ) C_ ( ZZ>= ` j ) |
| 46 |
|
uzss |
|- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
| 47 |
46 1
|
sseqtrrdi |
|- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ Z ) |
| 48 |
47 1
|
eleq2s |
|- ( j e. Z -> ( ZZ>= ` j ) C_ Z ) |
| 49 |
48
|
ad2antrl |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ZZ>= ` j ) C_ Z ) |
| 50 |
45 49
|
sstrid |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... k ) C_ Z ) |
| 51 |
|
ffvelcdm |
|- ( ( F : Z --> RR /\ n e. Z ) -> ( F ` n ) e. RR ) |
| 52 |
51
|
ralrimiva |
|- ( F : Z --> RR -> A. n e. Z ( F ` n ) e. RR ) |
| 53 |
3 52
|
syl |
|- ( ph -> A. n e. Z ( F ` n ) e. RR ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. Z ( F ` n ) e. RR ) |
| 55 |
|
ssralv |
|- ( ( j ... k ) C_ Z -> ( A. n e. Z ( F ` n ) e. RR -> A. n e. ( j ... k ) ( F ` n ) e. RR ) ) |
| 56 |
50 54 55
|
sylc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. ( j ... k ) ( F ` n ) e. RR ) |
| 57 |
56
|
r19.21bi |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... k ) ) -> ( F ` n ) e. RR ) |
| 58 |
|
fzssuz |
|- ( j ... ( k - 1 ) ) C_ ( ZZ>= ` j ) |
| 59 |
58 49
|
sstrid |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... ( k - 1 ) ) C_ Z ) |
| 60 |
59
|
sselda |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> n e. Z ) |
| 61 |
4
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 63 |
|
fveq2 |
|- ( k = n -> ( F ` k ) = ( F ` n ) ) |
| 64 |
|
fvoveq1 |
|- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
| 65 |
63 64
|
breq12d |
|- ( k = n -> ( ( F ` k ) <_ ( F ` ( k + 1 ) ) <-> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) ) |
| 66 |
65
|
rspccva |
|- ( ( A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) /\ n e. Z ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 67 |
62 66
|
sylan |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. Z ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 68 |
60 67
|
syldan |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 69 |
44 57 68
|
monoord |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) <_ ( F ` k ) ) |
| 70 |
38 42 43 69
|
lesub2dd |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) ) |
| 71 |
43 42
|
resubcld |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) e. RR ) |
| 72 |
43 38
|
resubcld |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` j ) ) e. RR ) |
| 73 |
25
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> y e. RR ) |
| 74 |
|
lelttr |
|- ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) e. RR /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) e. RR /\ y e. RR ) -> ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 75 |
71 72 73 74
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 76 |
70 75
|
mpand |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - ( F ` j ) ) < y -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 77 |
|
ltsub23 |
|- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR /\ ( F ` j ) e. RR ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) <-> ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) ) |
| 78 |
43 73 38 77
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) <-> ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) ) |
| 79 |
19
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 80 |
7
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> F Fn Z ) |
| 81 |
|
fnfvelrn |
|- ( ( F Fn Z /\ k e. Z ) -> ( F ` k ) e. ran F ) |
| 82 |
80 40 81
|
syl2an |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. ran F ) |
| 83 |
|
suprub |
|- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) /\ ( F ` k ) e. ran F ) -> ( F ` k ) <_ sup ( ran F , RR , < ) ) |
| 84 |
79 82 83
|
syl2anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) <_ sup ( ran F , RR , < ) ) |
| 85 |
42 43 84
|
abssuble0d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) = ( sup ( ran F , RR , < ) - ( F ` k ) ) ) |
| 86 |
85
|
breq1d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y <-> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 87 |
76 78 86
|
3imtr4d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 88 |
87
|
anassrs |
|- ( ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 89 |
88
|
ralrimdva |
|- ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 90 |
89
|
reximdva |
|- ( ( ph /\ y e. RR+ ) -> ( E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 91 |
35 90
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) |
| 92 |
91
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) |
| 93 |
1
|
fvexi |
|- Z e. _V |
| 94 |
|
fex |
|- ( ( F : Z --> RR /\ Z e. _V ) -> F e. _V ) |
| 95 |
3 93 94
|
sylancl |
|- ( ph -> F e. _V ) |
| 96 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
| 97 |
21
|
recnd |
|- ( ph -> sup ( ran F , RR , < ) e. CC ) |
| 98 |
3 41
|
sylan |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 99 |
98
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 100 |
1 2 95 96 97 99
|
clim2c |
|- ( ph -> ( F ~~> sup ( ran F , RR , < ) <-> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 101 |
92 100
|
mpbird |
|- ( ph -> F ~~> sup ( ran F , RR , < ) ) |