| Step | Hyp | Ref | Expression | 
						
							| 1 |  | esumpinfsum.p |  | 
						
							| 2 |  | esumpinfsum.a |  | 
						
							| 3 |  | esumpinfsum.1 |  | 
						
							| 4 |  | esumpinfsum.2 |  | 
						
							| 5 |  | esumpinfsum.3 |  | 
						
							| 6 |  | esumpinfsum.4 |  | 
						
							| 7 |  | esumpinfsum.5 |  | 
						
							| 8 |  | esumpinfsum.6 |  | 
						
							| 9 |  | iccssxr |  | 
						
							| 10 | 5 | ex |  | 
						
							| 11 | 1 10 | ralrimi |  | 
						
							| 12 | 2 | esumcl |  | 
						
							| 13 | 3 11 12 | syl2anc |  | 
						
							| 14 | 9 13 | sselid |  | 
						
							| 15 |  | 0xr |  | 
						
							| 16 |  | xrltle |  | 
						
							| 17 | 15 7 16 | sylancr |  | 
						
							| 18 | 8 17 | mpd |  | 
						
							| 19 |  | pnfge |  | 
						
							| 20 | 7 19 | syl |  | 
						
							| 21 |  | pnfxr |  | 
						
							| 22 |  | elicc1 |  | 
						
							| 23 | 15 21 22 | mp2an |  | 
						
							| 24 | 7 18 20 23 | syl3anbrc |  | 
						
							| 25 |  | nfcv |  | 
						
							| 26 | 2 25 | esumcst |  | 
						
							| 27 | 3 24 26 | syl2anc |  | 
						
							| 28 |  | hashinf |  | 
						
							| 29 | 3 4 28 | syl2anc |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 |  | xmulpnf2 |  | 
						
							| 32 | 7 8 31 | syl2anc |  | 
						
							| 33 | 27 30 32 | 3eqtrd |  | 
						
							| 34 | 24 | adantr |  | 
						
							| 35 | 1 2 3 34 5 6 | esumlef |  | 
						
							| 36 | 33 35 | eqbrtrrd |  | 
						
							| 37 |  | xgepnf |  | 
						
							| 38 | 37 | biimpd |  | 
						
							| 39 | 14 36 38 | sylc |  |