Metamath Proof Explorer


Theorem esumlef

Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Hypotheses esumaddf.0 k φ
esumaddf.a _ k A
esumaddf.1 φ A V
esumaddf.2 φ k A B 0 +∞
esumaddf.3 φ k A C 0 +∞
esumlef.3 φ k A B C
Assertion esumlef φ * k A B * k A C

Proof

Step Hyp Ref Expression
1 esumaddf.0 k φ
2 esumaddf.a _ k A
3 esumaddf.1 φ A V
4 esumaddf.2 φ k A B 0 +∞
5 esumaddf.3 φ k A C 0 +∞
6 esumlef.3 φ k A B C
7 iccssxr 0 +∞ *
8 4 ex φ k A B 0 +∞
9 1 8 ralrimi φ k A B 0 +∞
10 2 esumcl A V k A B 0 +∞ * k A B 0 +∞
11 3 9 10 syl2anc φ * k A B 0 +∞
12 7 11 sselid φ * k A B *
13 7 5 sselid φ k A C *
14 7 4 sselid φ k A B *
15 14 xnegcld φ k A B *
16 13 15 xaddcld φ k A C + 𝑒 B *
17 xsubge0 C * B * 0 C + 𝑒 B B C
18 13 14 17 syl2anc φ k A 0 C + 𝑒 B B C
19 6 18 mpbird φ k A 0 C + 𝑒 B
20 pnfge C + 𝑒 B * C + 𝑒 B +∞
21 16 20 syl φ k A C + 𝑒 B +∞
22 0xr 0 *
23 pnfxr +∞ *
24 elicc1 0 * +∞ * C + 𝑒 B 0 +∞ C + 𝑒 B * 0 C + 𝑒 B C + 𝑒 B +∞
25 22 23 24 mp2an C + 𝑒 B 0 +∞ C + 𝑒 B * 0 C + 𝑒 B C + 𝑒 B +∞
26 16 19 21 25 syl3anbrc φ k A C + 𝑒 B 0 +∞
27 26 ex φ k A C + 𝑒 B 0 +∞
28 1 27 ralrimi φ k A C + 𝑒 B 0 +∞
29 2 esumcl A V k A C + 𝑒 B 0 +∞ * k A C + 𝑒 B 0 +∞
30 3 28 29 syl2anc φ * k A C + 𝑒 B 0 +∞
31 7 30 sselid φ * k A C + 𝑒 B *
32 22 a1i φ 0 *
33 23 a1i φ +∞ *
34 elicc4 0 * +∞ * * k A C + 𝑒 B * * k A C + 𝑒 B 0 +∞ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
35 32 33 31 34 syl3anc φ * k A C + 𝑒 B 0 +∞ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
36 30 35 mpbid φ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
37 36 simpld φ 0 * k A C + 𝑒 B
38 xraddge02 * k A B * * k A C + 𝑒 B * 0 * k A C + 𝑒 B * k A B * k A B + 𝑒 * k A C + 𝑒 B
39 38 imp * k A B * * k A C + 𝑒 B * 0 * k A C + 𝑒 B * k A B * k A B + 𝑒 * k A C + 𝑒 B
40 12 31 37 39 syl21anc φ * k A B * k A B + 𝑒 * k A C + 𝑒 B
41 xaddcom * k A B * * k A C + 𝑒 B * * k A B + 𝑒 * k A C + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
42 12 31 41 syl2anc φ * k A B + 𝑒 * k A C + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
43 40 42 breqtrd φ * k A B * k A C + 𝑒 B + 𝑒 * k A B
44 1 2 3 26 4 esumaddf φ * k A C + 𝑒 B + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
45 xrge0npcan C 0 +∞ B 0 +∞ B C C + 𝑒 B + 𝑒 B = C
46 5 4 6 45 syl3anc φ k A C + 𝑒 B + 𝑒 B = C
47 46 ex φ k A C + 𝑒 B + 𝑒 B = C
48 1 47 ralrimi φ k A C + 𝑒 B + 𝑒 B = C
49 1 48 esumeq2d φ * k A C + 𝑒 B + 𝑒 B = * k A C
50 44 49 eqtr3d φ * k A C + 𝑒 B + 𝑒 * k A B = * k A C
51 43 50 breqtrd φ * k A B * k A C