Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumaddf.0 | |
|
esumaddf.a | |
||
esumaddf.1 | |
||
esumaddf.2 | |
||
esumaddf.3 | |
||
esumlef.3 | |
||
Assertion | esumlef | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumaddf.0 | |
|
2 | esumaddf.a | |
|
3 | esumaddf.1 | |
|
4 | esumaddf.2 | |
|
5 | esumaddf.3 | |
|
6 | esumlef.3 | |
|
7 | iccssxr | |
|
8 | 4 | ex | |
9 | 1 8 | ralrimi | |
10 | 2 | esumcl | |
11 | 3 9 10 | syl2anc | |
12 | 7 11 | sselid | |
13 | 7 5 | sselid | |
14 | 7 4 | sselid | |
15 | 14 | xnegcld | |
16 | 13 15 | xaddcld | |
17 | xsubge0 | |
|
18 | 13 14 17 | syl2anc | |
19 | 6 18 | mpbird | |
20 | pnfge | |
|
21 | 16 20 | syl | |
22 | 0xr | |
|
23 | pnfxr | |
|
24 | elicc1 | |
|
25 | 22 23 24 | mp2an | |
26 | 16 19 21 25 | syl3anbrc | |
27 | 26 | ex | |
28 | 1 27 | ralrimi | |
29 | 2 | esumcl | |
30 | 3 28 29 | syl2anc | |
31 | 7 30 | sselid | |
32 | 22 | a1i | |
33 | 23 | a1i | |
34 | elicc4 | |
|
35 | 32 33 31 34 | syl3anc | |
36 | 30 35 | mpbid | |
37 | 36 | simpld | |
38 | xraddge02 | |
|
39 | 38 | imp | |
40 | 12 31 37 39 | syl21anc | |
41 | xaddcom | |
|
42 | 12 31 41 | syl2anc | |
43 | 40 42 | breqtrd | |
44 | 1 2 3 26 4 | esumaddf | |
45 | xrge0npcan | |
|
46 | 5 4 6 45 | syl3anc | |
47 | 46 | ex | |
48 | 1 47 | ralrimi | |
49 | 1 48 | esumeq2d | |
50 | 44 49 | eqtr3d | |
51 | 43 50 | breqtrd | |