| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpinfval.0 |
|- F/ k ph |
| 2 |
|
esumpinfval.1 |
|- ( ph -> A e. V ) |
| 3 |
|
esumpinfval.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 4 |
|
esumpinfval.3 |
|- ( ph -> E. k e. A B = +oo ) |
| 5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 6 |
3
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
| 7 |
1 6
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 8 |
|
nfcv |
|- F/_ k A |
| 9 |
8
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 10 |
2 7 9
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
| 11 |
5 10
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
| 12 |
|
nfrab1 |
|- F/_ k { k e. A | B = +oo } |
| 13 |
|
ssrab2 |
|- { k e. A | B = +oo } C_ A |
| 14 |
13
|
a1i |
|- ( ph -> { k e. A | B = +oo } C_ A ) |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
|
pnfxr |
|- +oo e. RR* |
| 17 |
|
0lepnf |
|- 0 <_ +oo |
| 18 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
| 19 |
15 16 17 18
|
mp3an |
|- +oo e. ( 0 [,] +oo ) |
| 20 |
19
|
a1i |
|- ( ( ( ph /\ k e. A ) /\ B = +oo ) -> +oo e. ( 0 [,] +oo ) ) |
| 21 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
| 22 |
21
|
a1i |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> 0 e. ( 0 [,] +oo ) ) |
| 23 |
20 22
|
ifclda |
|- ( ( ph /\ k e. A ) -> if ( B = +oo , +oo , 0 ) e. ( 0 [,] +oo ) ) |
| 24 |
|
eldif |
|- ( k e. ( A \ { k e. A | B = +oo } ) <-> ( k e. A /\ -. k e. { k e. A | B = +oo } ) ) |
| 25 |
|
rabid |
|- ( k e. { k e. A | B = +oo } <-> ( k e. A /\ B = +oo ) ) |
| 26 |
25
|
simplbi2 |
|- ( k e. A -> ( B = +oo -> k e. { k e. A | B = +oo } ) ) |
| 27 |
26
|
con3dimp |
|- ( ( k e. A /\ -. k e. { k e. A | B = +oo } ) -> -. B = +oo ) |
| 28 |
24 27
|
sylbi |
|- ( k e. ( A \ { k e. A | B = +oo } ) -> -. B = +oo ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ k e. ( A \ { k e. A | B = +oo } ) ) -> -. B = +oo ) |
| 30 |
29
|
iffalsed |
|- ( ( ph /\ k e. ( A \ { k e. A | B = +oo } ) ) -> if ( B = +oo , +oo , 0 ) = 0 ) |
| 31 |
1 12 8 14 2 23 30
|
esumss |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = sum* k e. A if ( B = +oo , +oo , 0 ) ) |
| 32 |
|
eqidd |
|- ( ph -> { k e. A | B = +oo } = { k e. A | B = +oo } ) |
| 33 |
25
|
simprbi |
|- ( k e. { k e. A | B = +oo } -> B = +oo ) |
| 34 |
33
|
iftrued |
|- ( k e. { k e. A | B = +oo } -> if ( B = +oo , +oo , 0 ) = +oo ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ k e. { k e. A | B = +oo } ) -> if ( B = +oo , +oo , 0 ) = +oo ) |
| 36 |
1 32 35
|
esumeq12dvaf |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = sum* k e. { k e. A | B = +oo } +oo ) |
| 37 |
2 14
|
ssexd |
|- ( ph -> { k e. A | B = +oo } e. _V ) |
| 38 |
|
nfcv |
|- F/_ k +oo |
| 39 |
12 38
|
esumcst |
|- ( ( { k e. A | B = +oo } e. _V /\ +oo e. ( 0 [,] +oo ) ) -> sum* k e. { k e. A | B = +oo } +oo = ( ( # ` { k e. A | B = +oo } ) *e +oo ) ) |
| 40 |
37 19 39
|
sylancl |
|- ( ph -> sum* k e. { k e. A | B = +oo } +oo = ( ( # ` { k e. A | B = +oo } ) *e +oo ) ) |
| 41 |
|
hashxrcl |
|- ( { k e. A | B = +oo } e. _V -> ( # ` { k e. A | B = +oo } ) e. RR* ) |
| 42 |
37 41
|
syl |
|- ( ph -> ( # ` { k e. A | B = +oo } ) e. RR* ) |
| 43 |
|
rabn0 |
|- ( { k e. A | B = +oo } =/= (/) <-> E. k e. A B = +oo ) |
| 44 |
4 43
|
sylibr |
|- ( ph -> { k e. A | B = +oo } =/= (/) ) |
| 45 |
|
hashgt0 |
|- ( ( { k e. A | B = +oo } e. _V /\ { k e. A | B = +oo } =/= (/) ) -> 0 < ( # ` { k e. A | B = +oo } ) ) |
| 46 |
37 44 45
|
syl2anc |
|- ( ph -> 0 < ( # ` { k e. A | B = +oo } ) ) |
| 47 |
|
xmulpnf1 |
|- ( ( ( # ` { k e. A | B = +oo } ) e. RR* /\ 0 < ( # ` { k e. A | B = +oo } ) ) -> ( ( # ` { k e. A | B = +oo } ) *e +oo ) = +oo ) |
| 48 |
42 46 47
|
syl2anc |
|- ( ph -> ( ( # ` { k e. A | B = +oo } ) *e +oo ) = +oo ) |
| 49 |
36 40 48
|
3eqtrd |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = +oo ) |
| 50 |
31 49
|
eqtr3d |
|- ( ph -> sum* k e. A if ( B = +oo , +oo , 0 ) = +oo ) |
| 51 |
|
breq1 |
|- ( +oo = if ( B = +oo , +oo , 0 ) -> ( +oo <_ B <-> if ( B = +oo , +oo , 0 ) <_ B ) ) |
| 52 |
|
breq1 |
|- ( 0 = if ( B = +oo , +oo , 0 ) -> ( 0 <_ B <-> if ( B = +oo , +oo , 0 ) <_ B ) ) |
| 53 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
| 54 |
16 53
|
ax-mp |
|- +oo <_ +oo |
| 55 |
|
breq2 |
|- ( B = +oo -> ( +oo <_ B <-> +oo <_ +oo ) ) |
| 56 |
54 55
|
mpbiri |
|- ( B = +oo -> +oo <_ B ) |
| 57 |
56
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ B = +oo ) -> +oo <_ B ) |
| 58 |
3
|
adantr |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> B e. ( 0 [,] +oo ) ) |
| 59 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
| 60 |
15 16 59
|
mp3an12 |
|- ( B e. ( 0 [,] +oo ) -> 0 <_ B ) |
| 61 |
58 60
|
syl |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> 0 <_ B ) |
| 62 |
51 52 57 61
|
ifbothda |
|- ( ( ph /\ k e. A ) -> if ( B = +oo , +oo , 0 ) <_ B ) |
| 63 |
1 8 2 23 3 62
|
esumlef |
|- ( ph -> sum* k e. A if ( B = +oo , +oo , 0 ) <_ sum* k e. A B ) |
| 64 |
50 63
|
eqbrtrrd |
|- ( ph -> +oo <_ sum* k e. A B ) |
| 65 |
|
xgepnf |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B <-> sum* k e. A B = +oo ) ) |
| 66 |
65
|
biimpd |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B -> sum* k e. A B = +oo ) ) |
| 67 |
11 64 66
|
sylc |
|- ( ph -> sum* k e. A B = +oo ) |