Step |
Hyp |
Ref |
Expression |
1 |
|
esumpinfval.0 |
|- F/ k ph |
2 |
|
esumpinfval.1 |
|- ( ph -> A e. V ) |
3 |
|
esumpinfval.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
esumpinfval.3 |
|- ( ph -> E. k e. A B = +oo ) |
5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
6 |
3
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
7 |
1 6
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
8 |
|
nfcv |
|- F/_ k A |
9 |
8
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
10 |
2 7 9
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
11 |
5 10
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
12 |
|
nfrab1 |
|- F/_ k { k e. A | B = +oo } |
13 |
|
ssrab2 |
|- { k e. A | B = +oo } C_ A |
14 |
13
|
a1i |
|- ( ph -> { k e. A | B = +oo } C_ A ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
|
pnfxr |
|- +oo e. RR* |
17 |
|
0lepnf |
|- 0 <_ +oo |
18 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
19 |
15 16 17 18
|
mp3an |
|- +oo e. ( 0 [,] +oo ) |
20 |
19
|
a1i |
|- ( ( ( ph /\ k e. A ) /\ B = +oo ) -> +oo e. ( 0 [,] +oo ) ) |
21 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
22 |
21
|
a1i |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> 0 e. ( 0 [,] +oo ) ) |
23 |
20 22
|
ifclda |
|- ( ( ph /\ k e. A ) -> if ( B = +oo , +oo , 0 ) e. ( 0 [,] +oo ) ) |
24 |
|
eldif |
|- ( k e. ( A \ { k e. A | B = +oo } ) <-> ( k e. A /\ -. k e. { k e. A | B = +oo } ) ) |
25 |
|
rabid |
|- ( k e. { k e. A | B = +oo } <-> ( k e. A /\ B = +oo ) ) |
26 |
25
|
simplbi2 |
|- ( k e. A -> ( B = +oo -> k e. { k e. A | B = +oo } ) ) |
27 |
26
|
con3dimp |
|- ( ( k e. A /\ -. k e. { k e. A | B = +oo } ) -> -. B = +oo ) |
28 |
24 27
|
sylbi |
|- ( k e. ( A \ { k e. A | B = +oo } ) -> -. B = +oo ) |
29 |
28
|
adantl |
|- ( ( ph /\ k e. ( A \ { k e. A | B = +oo } ) ) -> -. B = +oo ) |
30 |
29
|
iffalsed |
|- ( ( ph /\ k e. ( A \ { k e. A | B = +oo } ) ) -> if ( B = +oo , +oo , 0 ) = 0 ) |
31 |
1 12 8 14 2 23 30
|
esumss |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = sum* k e. A if ( B = +oo , +oo , 0 ) ) |
32 |
|
eqidd |
|- ( ph -> { k e. A | B = +oo } = { k e. A | B = +oo } ) |
33 |
25
|
simprbi |
|- ( k e. { k e. A | B = +oo } -> B = +oo ) |
34 |
33
|
iftrued |
|- ( k e. { k e. A | B = +oo } -> if ( B = +oo , +oo , 0 ) = +oo ) |
35 |
34
|
adantl |
|- ( ( ph /\ k e. { k e. A | B = +oo } ) -> if ( B = +oo , +oo , 0 ) = +oo ) |
36 |
1 32 35
|
esumeq12dvaf |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = sum* k e. { k e. A | B = +oo } +oo ) |
37 |
2 14
|
ssexd |
|- ( ph -> { k e. A | B = +oo } e. _V ) |
38 |
|
nfcv |
|- F/_ k +oo |
39 |
12 38
|
esumcst |
|- ( ( { k e. A | B = +oo } e. _V /\ +oo e. ( 0 [,] +oo ) ) -> sum* k e. { k e. A | B = +oo } +oo = ( ( # ` { k e. A | B = +oo } ) *e +oo ) ) |
40 |
37 19 39
|
sylancl |
|- ( ph -> sum* k e. { k e. A | B = +oo } +oo = ( ( # ` { k e. A | B = +oo } ) *e +oo ) ) |
41 |
|
hashxrcl |
|- ( { k e. A | B = +oo } e. _V -> ( # ` { k e. A | B = +oo } ) e. RR* ) |
42 |
37 41
|
syl |
|- ( ph -> ( # ` { k e. A | B = +oo } ) e. RR* ) |
43 |
|
rabn0 |
|- ( { k e. A | B = +oo } =/= (/) <-> E. k e. A B = +oo ) |
44 |
4 43
|
sylibr |
|- ( ph -> { k e. A | B = +oo } =/= (/) ) |
45 |
|
hashgt0 |
|- ( ( { k e. A | B = +oo } e. _V /\ { k e. A | B = +oo } =/= (/) ) -> 0 < ( # ` { k e. A | B = +oo } ) ) |
46 |
37 44 45
|
syl2anc |
|- ( ph -> 0 < ( # ` { k e. A | B = +oo } ) ) |
47 |
|
xmulpnf1 |
|- ( ( ( # ` { k e. A | B = +oo } ) e. RR* /\ 0 < ( # ` { k e. A | B = +oo } ) ) -> ( ( # ` { k e. A | B = +oo } ) *e +oo ) = +oo ) |
48 |
42 46 47
|
syl2anc |
|- ( ph -> ( ( # ` { k e. A | B = +oo } ) *e +oo ) = +oo ) |
49 |
36 40 48
|
3eqtrd |
|- ( ph -> sum* k e. { k e. A | B = +oo } if ( B = +oo , +oo , 0 ) = +oo ) |
50 |
31 49
|
eqtr3d |
|- ( ph -> sum* k e. A if ( B = +oo , +oo , 0 ) = +oo ) |
51 |
|
breq1 |
|- ( +oo = if ( B = +oo , +oo , 0 ) -> ( +oo <_ B <-> if ( B = +oo , +oo , 0 ) <_ B ) ) |
52 |
|
breq1 |
|- ( 0 = if ( B = +oo , +oo , 0 ) -> ( 0 <_ B <-> if ( B = +oo , +oo , 0 ) <_ B ) ) |
53 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
54 |
16 53
|
ax-mp |
|- +oo <_ +oo |
55 |
|
breq2 |
|- ( B = +oo -> ( +oo <_ B <-> +oo <_ +oo ) ) |
56 |
54 55
|
mpbiri |
|- ( B = +oo -> +oo <_ B ) |
57 |
56
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ B = +oo ) -> +oo <_ B ) |
58 |
3
|
adantr |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> B e. ( 0 [,] +oo ) ) |
59 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
60 |
15 16 59
|
mp3an12 |
|- ( B e. ( 0 [,] +oo ) -> 0 <_ B ) |
61 |
58 60
|
syl |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> 0 <_ B ) |
62 |
51 52 57 61
|
ifbothda |
|- ( ( ph /\ k e. A ) -> if ( B = +oo , +oo , 0 ) <_ B ) |
63 |
1 8 2 23 3 62
|
esumlef |
|- ( ph -> sum* k e. A if ( B = +oo , +oo , 0 ) <_ sum* k e. A B ) |
64 |
50 63
|
eqbrtrrd |
|- ( ph -> +oo <_ sum* k e. A B ) |
65 |
|
xgepnf |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B <-> sum* k e. A B = +oo ) ) |
66 |
65
|
biimpd |
|- ( sum* k e. A B e. RR* -> ( +oo <_ sum* k e. A B -> sum* k e. A B = +oo ) ) |
67 |
11 64 66
|
sylc |
|- ( ph -> sum* k e. A B = +oo ) |