Step |
Hyp |
Ref |
Expression |
1 |
|
esumpinfval.0 |
|
2 |
|
esumpinfval.1 |
|
3 |
|
esumpinfval.2 |
|
4 |
|
esumpinfval.3 |
|
5 |
|
iccssxr |
|
6 |
3
|
ex |
|
7 |
1 6
|
ralrimi |
|
8 |
|
nfcv |
|
9 |
8
|
esumcl |
|
10 |
2 7 9
|
syl2anc |
|
11 |
5 10
|
sselid |
|
12 |
|
nfrab1 |
|
13 |
|
ssrab2 |
|
14 |
13
|
a1i |
|
15 |
|
0xr |
|
16 |
|
pnfxr |
|
17 |
|
0lepnf |
|
18 |
|
ubicc2 |
|
19 |
15 16 17 18
|
mp3an |
|
20 |
19
|
a1i |
|
21 |
|
0e0iccpnf |
|
22 |
21
|
a1i |
|
23 |
20 22
|
ifclda |
|
24 |
|
eldif |
|
25 |
|
rabid |
|
26 |
25
|
simplbi2 |
|
27 |
26
|
con3dimp |
|
28 |
24 27
|
sylbi |
|
29 |
28
|
adantl |
|
30 |
29
|
iffalsed |
|
31 |
1 12 8 14 2 23 30
|
esumss |
|
32 |
|
eqidd |
|
33 |
25
|
simprbi |
|
34 |
33
|
iftrued |
|
35 |
34
|
adantl |
|
36 |
1 32 35
|
esumeq12dvaf |
|
37 |
2 14
|
ssexd |
|
38 |
|
nfcv |
|
39 |
12 38
|
esumcst |
|
40 |
37 19 39
|
sylancl |
|
41 |
|
hashxrcl |
|
42 |
37 41
|
syl |
|
43 |
|
rabn0 |
|
44 |
4 43
|
sylibr |
|
45 |
|
hashgt0 |
|
46 |
37 44 45
|
syl2anc |
|
47 |
|
xmulpnf1 |
|
48 |
42 46 47
|
syl2anc |
|
49 |
36 40 48
|
3eqtrd |
|
50 |
31 49
|
eqtr3d |
|
51 |
|
breq1 |
|
52 |
|
breq1 |
|
53 |
|
pnfge |
|
54 |
16 53
|
ax-mp |
|
55 |
|
breq2 |
|
56 |
54 55
|
mpbiri |
|
57 |
56
|
adantl |
|
58 |
3
|
adantr |
|
59 |
|
iccgelb |
|
60 |
15 16 59
|
mp3an12 |
|
61 |
58 60
|
syl |
|
62 |
51 52 57 61
|
ifbothda |
|
63 |
1 8 2 23 3 62
|
esumlef |
|
64 |
50 63
|
eqbrtrrd |
|
65 |
|
xgepnf |
|
66 |
65
|
biimpd |
|
67 |
11 64 66
|
sylc |
|