| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpinfval.0 |
|
| 2 |
|
esumpinfval.1 |
|
| 3 |
|
esumpinfval.2 |
|
| 4 |
|
esumpinfval.3 |
|
| 5 |
|
iccssxr |
|
| 6 |
3
|
ex |
|
| 7 |
1 6
|
ralrimi |
|
| 8 |
|
nfcv |
|
| 9 |
8
|
esumcl |
|
| 10 |
2 7 9
|
syl2anc |
|
| 11 |
5 10
|
sselid |
|
| 12 |
|
nfrab1 |
|
| 13 |
|
ssrab2 |
|
| 14 |
13
|
a1i |
|
| 15 |
|
0xr |
|
| 16 |
|
pnfxr |
|
| 17 |
|
0lepnf |
|
| 18 |
|
ubicc2 |
|
| 19 |
15 16 17 18
|
mp3an |
|
| 20 |
19
|
a1i |
|
| 21 |
|
0e0iccpnf |
|
| 22 |
21
|
a1i |
|
| 23 |
20 22
|
ifclda |
|
| 24 |
|
eldif |
|
| 25 |
|
rabid |
|
| 26 |
25
|
simplbi2 |
|
| 27 |
26
|
con3dimp |
|
| 28 |
24 27
|
sylbi |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
iffalsed |
|
| 31 |
1 12 8 14 2 23 30
|
esumss |
|
| 32 |
|
eqidd |
|
| 33 |
25
|
simprbi |
|
| 34 |
33
|
iftrued |
|
| 35 |
34
|
adantl |
|
| 36 |
1 32 35
|
esumeq12dvaf |
|
| 37 |
2 14
|
ssexd |
|
| 38 |
|
nfcv |
|
| 39 |
12 38
|
esumcst |
|
| 40 |
37 19 39
|
sylancl |
|
| 41 |
|
hashxrcl |
|
| 42 |
37 41
|
syl |
|
| 43 |
|
rabn0 |
|
| 44 |
4 43
|
sylibr |
|
| 45 |
|
hashgt0 |
|
| 46 |
37 44 45
|
syl2anc |
|
| 47 |
|
xmulpnf1 |
|
| 48 |
42 46 47
|
syl2anc |
|
| 49 |
36 40 48
|
3eqtrd |
|
| 50 |
31 49
|
eqtr3d |
|
| 51 |
|
breq1 |
|
| 52 |
|
breq1 |
|
| 53 |
|
pnfge |
|
| 54 |
16 53
|
ax-mp |
|
| 55 |
|
breq2 |
|
| 56 |
54 55
|
mpbiri |
|
| 57 |
56
|
adantl |
|
| 58 |
3
|
adantr |
|
| 59 |
|
iccgelb |
|
| 60 |
15 16 59
|
mp3an12 |
|
| 61 |
58 60
|
syl |
|
| 62 |
51 52 57 61
|
ifbothda |
|
| 63 |
1 8 2 23 3 62
|
esumlef |
|
| 64 |
50 63
|
eqbrtrrd |
|
| 65 |
|
xgepnf |
|
| 66 |
65
|
biimpd |
|
| 67 |
11 64 66
|
sylc |
|