Metamath Proof Explorer


Theorem measxun2

Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017)

Ref Expression
Assertion measxun2 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀𝐴 ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
2 simp2r ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → 𝐵𝑆 )
3 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
4 1 3 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → 𝑆 ran sigAlgebra )
5 simp2l ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → 𝐴𝑆 )
6 difelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )
7 4 5 2 6 syl3anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝐴𝐵 ) ∈ 𝑆 )
8 prelpwi ( ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) → { 𝐵 , ( 𝐴𝐵 ) } ∈ 𝒫 𝑆 )
9 2 7 8 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → { 𝐵 , ( 𝐴𝐵 ) } ∈ 𝒫 𝑆 )
10 prct ( ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) → { 𝐵 , ( 𝐴𝐵 ) } ≼ ω )
11 2 7 10 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → { 𝐵 , ( 𝐴𝐵 ) } ≼ ω )
12 simp3 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → 𝐵𝐴 )
13 disjdifprg2 ( 𝐴𝑆Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥 )
14 prcom { ( 𝐴𝐵 ) , 𝐵 } = { 𝐵 , ( 𝐴𝐵 ) }
15 dfss ( 𝐵𝐴𝐵 = ( 𝐵𝐴 ) )
16 15 biimpi ( 𝐵𝐴𝐵 = ( 𝐵𝐴 ) )
17 incom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
18 16 17 eqtrdi ( 𝐵𝐴𝐵 = ( 𝐴𝐵 ) )
19 18 preq2d ( 𝐵𝐴 → { ( 𝐴𝐵 ) , 𝐵 } = { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } )
20 14 19 eqtr3id ( 𝐵𝐴 → { 𝐵 , ( 𝐴𝐵 ) } = { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } )
21 20 disjeq1d ( 𝐵𝐴 → ( Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥 ) )
22 21 biimprd ( 𝐵𝐴 → ( Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥 ) )
23 13 22 mpan9 ( ( 𝐴𝑆𝐵𝐴 ) → Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥 )
24 5 12 23 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥 )
25 11 24 jca ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( { 𝐵 , ( 𝐴𝐵 ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥 ) )
26 measvun ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ { 𝐵 , ( 𝐴𝐵 ) } ∈ 𝒫 𝑆 ∧ ( { 𝐵 , ( 𝐴𝐵 ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } 𝑥 ) ) → ( 𝑀 { 𝐵 , ( 𝐴𝐵 ) } ) = Σ* 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } ( 𝑀𝑥 ) )
27 1 9 25 26 syl3anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀 { 𝐵 , ( 𝐴𝐵 ) } ) = Σ* 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } ( 𝑀𝑥 ) )
28 2 7 jca ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) )
29 uniprg ( ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) → { 𝐵 , ( 𝐴𝐵 ) } = ( 𝐵 ∪ ( 𝐴𝐵 ) ) )
30 undif ( 𝐵𝐴 ↔ ( 𝐵 ∪ ( 𝐴𝐵 ) ) = 𝐴 )
31 30 biimpi ( 𝐵𝐴 → ( 𝐵 ∪ ( 𝐴𝐵 ) ) = 𝐴 )
32 29 31 sylan9eq ( ( ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) ∧ 𝐵𝐴 ) → { 𝐵 , ( 𝐴𝐵 ) } = 𝐴 )
33 32 fveq2d ( ( ( 𝐵𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀 { 𝐵 , ( 𝐴𝐵 ) } ) = ( 𝑀𝐴 ) )
34 28 12 33 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀 { 𝐵 , ( 𝐴𝐵 ) } ) = ( 𝑀𝐴 ) )
35 simpr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 )
36 35 fveq2d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝑥 = 𝐵 ) → ( 𝑀𝑥 ) = ( 𝑀𝐵 ) )
37 simpr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝑥 = ( 𝐴𝐵 ) ) → 𝑥 = ( 𝐴𝐵 ) )
38 37 fveq2d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝑥 = ( 𝐴𝐵 ) ) → ( 𝑀𝑥 ) = ( 𝑀 ‘ ( 𝐴𝐵 ) ) )
39 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
40 1 2 39 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
41 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) ∈ ( 0 [,] +∞ ) )
42 1 7 41 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) ∈ ( 0 [,] +∞ ) )
43 eqimss ( 𝐵 = ( 𝐴𝐵 ) → 𝐵 ⊆ ( 𝐴𝐵 ) )
44 ssdifeq0 ( 𝐵 ⊆ ( 𝐴𝐵 ) ↔ 𝐵 = ∅ )
45 43 44 sylib ( 𝐵 = ( 𝐴𝐵 ) → 𝐵 = ∅ )
46 45 fveq2d ( 𝐵 = ( 𝐴𝐵 ) → ( 𝑀𝐵 ) = ( 𝑀 ‘ ∅ ) )
47 measvnul ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 )
48 46 47 sylan9eqr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 = ( 𝐴𝐵 ) ) → ( 𝑀𝐵 ) = 0 )
49 1 48 sylan ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝐵 = ( 𝐴𝐵 ) ) → ( 𝑀𝐵 ) = 0 )
50 49 orcd ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) ∧ 𝐵 = ( 𝐴𝐵 ) ) → ( ( 𝑀𝐵 ) = 0 ∨ ( 𝑀𝐵 ) = +∞ ) )
51 50 ex ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝐵 = ( 𝐴𝐵 ) → ( ( 𝑀𝐵 ) = 0 ∨ ( 𝑀𝐵 ) = +∞ ) ) )
52 36 38 2 7 40 42 51 esumpr2 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → Σ* 𝑥 ∈ { 𝐵 , ( 𝐴𝐵 ) } ( 𝑀𝑥 ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( 𝐴𝐵 ) ) ) )
53 27 34 52 3eqtr3d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ 𝐵𝐴 ) → ( 𝑀𝐴 ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( 𝐴𝐵 ) ) ) )