| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 2 |
|
simp2r |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 3 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 4 |
1 3
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 5 |
|
simp2l |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ 𝑆 ) |
| 6 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |
| 7 |
4 5 2 6
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |
| 8 |
|
prelpwi |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ∈ 𝒫 𝑆 ) |
| 9 |
2 7 8
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ∈ 𝒫 𝑆 ) |
| 10 |
|
prct |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ≼ ω ) |
| 11 |
2 7 10
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ≼ ω ) |
| 12 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 13 |
|
disjdifprg2 |
⊢ ( 𝐴 ∈ 𝑆 → Disj 𝑥 ∈ { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) |
| 14 |
|
prcom |
⊢ { ( 𝐴 ∖ 𝐵 ) , 𝐵 } = { 𝐵 , ( 𝐴 ∖ 𝐵 ) } |
| 15 |
|
dfss |
⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |
| 16 |
15
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |
| 17 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
| 18 |
16 17
|
eqtrdi |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 = ( 𝐴 ∩ 𝐵 ) ) |
| 19 |
18
|
preq2d |
⊢ ( 𝐵 ⊆ 𝐴 → { ( 𝐴 ∖ 𝐵 ) , 𝐵 } = { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } ) |
| 20 |
14 19
|
eqtr3id |
⊢ ( 𝐵 ⊆ 𝐴 → { 𝐵 , ( 𝐴 ∖ 𝐵 ) } = { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } ) |
| 21 |
20
|
disjeq1d |
⊢ ( 𝐵 ⊆ 𝐴 → ( Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ↔ Disj 𝑥 ∈ { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) ) |
| 22 |
21
|
biimprd |
⊢ ( 𝐵 ⊆ 𝐴 → ( Disj 𝑥 ∈ { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 → Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ) ) |
| 23 |
13 22
|
mpan9 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴 ) → Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ) |
| 24 |
5 12 23
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ) |
| 25 |
11 24
|
jca |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ) ) |
| 26 |
|
measvun |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ∈ 𝒫 𝑆 ∧ ( { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } 𝑥 ) ) → ( 𝑀 ‘ ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ) = Σ* 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ( 𝑀 ‘ 𝑥 ) ) |
| 27 |
1 9 25 26
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ) = Σ* 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ( 𝑀 ‘ 𝑥 ) ) |
| 28 |
2 7
|
jca |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ) |
| 29 |
|
uniprg |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 30 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 31 |
30
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 32 |
29 31
|
sylan9eq |
⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } = 𝐴 ) |
| 33 |
32
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ) = ( 𝑀 ‘ 𝐴 ) ) |
| 34 |
28 12 33
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ ∪ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ) = ( 𝑀 ‘ 𝐴 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 36 |
35
|
fveq2d |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 = 𝐵 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝐵 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 = ( 𝐴 ∖ 𝐵 ) ) → 𝑥 = ( 𝐴 ∖ 𝐵 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 39 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 40 |
1 2 39
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 41 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 42 |
1 7 41
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 43 |
|
eqimss |
⊢ ( 𝐵 = ( 𝐴 ∖ 𝐵 ) → 𝐵 ⊆ ( 𝐴 ∖ 𝐵 ) ) |
| 44 |
|
ssdifeq0 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∖ 𝐵 ) ↔ 𝐵 = ∅ ) |
| 45 |
43 44
|
sylib |
⊢ ( 𝐵 = ( 𝐴 ∖ 𝐵 ) → 𝐵 = ∅ ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝐵 = ( 𝐴 ∖ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ ∅ ) ) |
| 47 |
|
measvnul |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 48 |
46 47
|
sylan9eqr |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝑀 ‘ 𝐵 ) = 0 ) |
| 49 |
1 48
|
sylan |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐵 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝑀 ‘ 𝐵 ) = 0 ) |
| 50 |
49
|
orcd |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐵 = ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝑀 ‘ 𝐵 ) = 0 ∨ ( 𝑀 ‘ 𝐵 ) = +∞ ) ) |
| 51 |
50
|
ex |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 = ( 𝐴 ∖ 𝐵 ) → ( ( 𝑀 ‘ 𝐵 ) = 0 ∨ ( 𝑀 ‘ 𝐵 ) = +∞ ) ) ) |
| 52 |
36 38 2 7 40 42 51
|
esumpr2 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → Σ* 𝑥 ∈ { 𝐵 , ( 𝐴 ∖ 𝐵 ) } ( 𝑀 ‘ 𝑥 ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 53 |
27 34 52
|
3eqtr3d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑀 ‘ 𝐴 ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |