Metamath Proof Explorer


Theorem measunl

Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Hypotheses measunl.1 φ M measures S
measunl.2 φ A S
measunl.3 φ B S
Assertion measunl φ M A B M A + 𝑒 M B

Proof

Step Hyp Ref Expression
1 measunl.1 φ M measures S
2 measunl.2 φ A S
3 measunl.3 φ B S
4 undif1 A B B = A B
5 4 fveq2i M A B B = M A B
6 measbase M measures S S ran sigAlgebra
7 1 6 syl φ S ran sigAlgebra
8 difelsiga S ran sigAlgebra A S B S A B S
9 7 2 3 8 syl3anc φ A B S
10 incom B A B = A B B
11 disjdif B A B =
12 10 11 eqtr3i A B B =
13 12 a1i φ A B B =
14 measun M measures S A B S B S A B B = M A B B = M A B + 𝑒 M B
15 1 9 3 13 14 syl121anc φ M A B B = M A B + 𝑒 M B
16 5 15 syl5eqr φ M A B = M A B + 𝑒 M B
17 iccssxr 0 +∞ *
18 measvxrge0 M measures S A B S M A B 0 +∞
19 1 9 18 syl2anc φ M A B 0 +∞
20 17 19 sseldi φ M A B *
21 measvxrge0 M measures S A S M A 0 +∞
22 1 2 21 syl2anc φ M A 0 +∞
23 17 22 sseldi φ M A *
24 measvxrge0 M measures S B S M B 0 +∞
25 1 3 24 syl2anc φ M B 0 +∞
26 17 25 sseldi φ M B *
27 inelsiga S ran sigAlgebra A S B S A B S
28 7 2 3 27 syl3anc φ A B S
29 measvxrge0 M measures S A B S M A B 0 +∞
30 1 28 29 syl2anc φ M A B 0 +∞
31 elxrge0 M A B 0 +∞ M A B * 0 M A B
32 30 31 sylib φ M A B * 0 M A B
33 32 simprd φ 0 M A B
34 17 30 sseldi φ M A B *
35 xraddge02 M A B * M A B * 0 M A B M A B M A B + 𝑒 M A B
36 20 34 35 syl2anc φ 0 M A B M A B M A B + 𝑒 M A B
37 33 36 mpd φ M A B M A B + 𝑒 M A B
38 uncom A B A B = A B A B
39 inundif A B A B = A
40 38 39 eqtr3i A B A B = A
41 40 fveq2i M A B A B = M A
42 incom A B A B = A B A B
43 inindif A B A B =
44 42 43 eqtr3i A B A B =
45 44 a1i φ A B A B =
46 measun M measures S A B S A B S A B A B = M A B A B = M A B + 𝑒 M A B
47 1 9 28 45 46 syl121anc φ M A B A B = M A B + 𝑒 M A B
48 41 47 syl5eqr φ M A = M A B + 𝑒 M A B
49 37 48 breqtrrd φ M A B M A
50 xleadd1a M A B * M A * M B * M A B M A M A B + 𝑒 M B M A + 𝑒 M B
51 20 23 26 49 50 syl31anc φ M A B + 𝑒 M B M A + 𝑒 M B
52 16 51 eqbrtrd φ M A B M A + 𝑒 M B